The Topology of Path Component Spaces

Total Page:16

File Type:pdf, Size:1020Kb

The Topology of Path Component Spaces The topology of path component spaces Jeremy Brazas October 26, 2012 Abstract The path component space of a topological space X is the quotient space of X whose points are the path components of X. This paper contains a general study of the topological properties of path component spaces including their relationship to the zeroth dimensional shape group. Path component spaces are simple-to-describe and well-known objects but only recently have recieved more attention. This is primarily due to increased qtop interest and application of the quasitopological fundamental group π1 (X; x0) of a space X with basepoint x0 and its variants; See e.g. [2, 3, 5, 7, 8, 9]. Recall qtop π1 (X; x0) is the path component space of the space Ω(X; x0) of loops based at x0 X with the compact-open topology. The author claims little originality here but2 knows of no general treatment of path component spaces. 1 Path component spaces Definition 1. The path component space of a topological space X, is the quotient space π0(X) obtained by identifying each path component of X to a point. If x X, let [x] denote the path component of x in X. Let qX : X π0(X), q(x) = [x2] denote the canonical quotient map. We also write [A] for the! image qX(A) of a set A X. Note that if f : X Y is a map, then f ([x]) [ f (x)]. Thus f determines a well-defined⊂ function f !: π (X) π (Y) given by⊆f ([x]) = [ f (x)]. 0 0 ! 0 0 Moreover, f0 is continuous since f0qX = qY f and qX is quotient. Altogether, we obtain an endofunctor of the category Top of topological spaces. Proposition 2. π : Top Top is a functor. 0 ! Remark 3. If X has a given basepoint x0, we take the basepoint of π0(X) to be [x0] and denote the resulting based space as π0(X; x0). This gives a functor on the category of based topological spaces. Definition 4. A space X is semi-locally 0--connected if for every point x X, there is a neighborhood U of x such that the inclusion i : U X induces2 the constant map i : π (U) π (X). ! 0 0 ! 0 1 Note that π0(X) is discrete if and only if each path component of X is open. Proposition 5. π0(X) is discrete iff X is semi-locally 0-connected. Proof. If X is semi-locally 0-connected and x X, then there is a neighborhood 2 U of x such that the inclusion i : U X induces the constant map i0 : π0(U) π (X). Thus U [x] and [x] is open! in X. Since any given path component! of 0 ⊆ X is open, π0(X) is discrete. Conversely, suppose π0(X) is discrete. If x X, let U be the open set [x]. Clearly the inclusion [x] X induces the constant2 map π ([x]) π (X). ! 0 ! 0 Corollary 6. If X is locally path connected, then π0(X) is discrete. Example 7. If X is a geometric simplicial complex or a CW-complex, then π0(X) is discrete. Another case of interest is when the natural quotient map qX : X π0(X) is a homeomorphism. ! Remark 8. The quotient map qX : X π (X) is a homeomorphism iff it is ! 0 injective. Thus qX is a homeomorphism iff X is totally path disconnected (i.e. each path component consists of a single point). Specifically, X π0(X) if X is totally disconnected or zero dimensional (there is a basis for the topology of X consisting of clopen sets). Another general and useful fact about path component spaces is that every space is a path component space. Theorem 9. [10] For every space X, there is a paracompact Hausdorff space H(X) and a natural homeomorphism π0(H(X)) X. 2 Examples Example 10. Let T R2 be the topologist’s sine curve ⊆ 1 T = (0; 0) (x; y) y = sin ; 0 < x 1/π f g [ j x ≤ and Tc = T 0 [ 1; 1] be the closed topologist’s sine curve. It is easy to see [ f g × − that in both cases, the path component space π0(T) π0(Tc) is homeomorphic to the Sierpinski space S = 0; 1 with topology ; 1 ; 0; 1 . In particular, the open set 1 cooresponds tof theg path componentf; off (1g/π,f 0).gg f g The above example allows us to characterize when certain path component spaces are T1. Recall that a space X is sequential if for every non-closed set A X, there is a convergent sequence xn x such that xn A and x < A. It is⊂ well-known that metric spaces are sequential! and sequential2 spaces are precisely those which are quotients of metric spaces. 2 Proposition 11. If π0(X) is T1, then any map f : T X from the topologist’s sine curve induces the constant map f : S π (X). If X is! sequential, the converse holds. 0 ! 0 Proof. Let A = (0; 0) and B = T A be the path components so that π0(T) = f g n 1 A; B with topology ; B ; A; B and let tn = nπ , n 1. Suppose π0(X) is T1 f g f; f g f gg ≥ 1 and f : T X be a map. Since the singleton f (B) is closed in X, f − ( f (B)) ! f g 0 is non-empty and closed in π0(T). Since the only non-empty closed set in 1 π (T) containing B is π (T) = A; B , we have f − ( f (B)) = A; B . Therefore 0 0 f g 0 f g f0(A) = f0(B) showing f0 is constant. Suppose X is sequential and x X. To obtain a contradiction, suppose the 2 singleton [x] is not closed in π (X). Since qX : X π (X) is quotient, [x] is not f g 0 ! 0 closed in X. Thus there is a convergent sequence xn x such that xn [x] and ! 2 x < [x]. Define a function f : T X by f (tn) = xn and f (0; 0) = x. Extend f to ! the rest of T by defining f on the arc from tn to tn+1 to be a path from xn to xn+1 in X (which exists since xn [x] for all n). Clearly f is continuous and induces an injection f : S π (X).2 0 ! 0 One can generalize this approach to general spaces by replacing convergent sequences with convergent nets and T by analogous constructions based on directed sets. The next example allows us to realiize subspaces of R as path component spaces of simple spaces constructed independently of Theorem 9. Example 12. Let X be the set R [0; 1]. We define a Hausdorff topology × on X such that π0(A [0; 1]) A for each subset of the form A [0; 1] X. The topology on X has× a basis consisting of sets of the form a× (s; t)⊆ and a (t; 1] (a; b) [0; 1] b [0; s) for 0 < s < t < 1 and a < b.f Thisg × topology isf g a × simple[ extension× of[ the f gordered × square in [14, 16, Example 3] and is the order topology given by the dictionary ordering onx X. The path components of X are z [0; 1] for z R (see [14, 24, Example 6]). It then suffices to f g × 2 x show that for each A R, the projection pA : XA A is quotient, where ⊆ ! XA = A [0; 1] has the subspace topology of X. Suppose U is open in R × 1 so that U A is open in A. Since U [0; 1] = pR− (U) is open in X and so \ 1× (U [0; 1]) XA = (U A) [0; 1] = pA− (U A) is open in XA. Therefore pA is × \ \ × \ 1 continuous. Now suppose V A such that p− (V) = V [0; 1] is open in XA. For ⊆ A × each v V, there is an open neighborhood v (tv; 1] (v; bv) I bv [0; sv) 2 f g × [ × [ f g × of (v; 1) contained in V [0; 1]. Since V [0; 1] is saturated with respect to pA, × × we have ([v; bv] A) [0; 1] V [0; 1]. Similarly, since (v; 0) V for each v V \ × ⊂ × 2 2 we can find a closed interval [av; v] such that ([av; v] A) [0; 1] V [0; 1]. \ × ⊂ × Therefore, for each v V, we have v (av; bv) A V. Therefore V is open in 2 2 \ ⊆ A. Thus pA is quotient, and consequently π0(XA) A. Example 13. Using the previous example, we can find a smiple space Y such 1 1 that π0(Y) S . Let : R S denote the exponential map and X = R [0; 1] be the space defined in the! previous example. Let Y be the set S1 [0; 1]× with the quotient topology with respect to id : X S1 [0; 1]. The× projection 1 × ! × 1 Y S is precisely the quotient map qY : Y π (Y) and so S π (Y). ! ! 0 0 3 3 Limits and colimits Proposition 14. π : Top Top preserves coproducts and quotients. 0 ! ` ` Proof. It is immediate that π ( X ) π (X ). If p : X Y is a quotient 0 λ λ λ 0 λ ! map, then qY p = p0 qX is a quotient map. Since qX is quotient, p0 = π0(p) is quotient. ◦ ◦ Though π0 preserves coproducts, unfortunately it fails to be cocontinuous (in the sense that it preserves all colimits).
Recommended publications
  • A Surface of Maximal Canonical Degree 11
    A SURFACE OF MAXIMAL CANONICAL DEGREE SAI-KEE YEUNG Abstract. It is known since the 70's from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a min- imal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface. 1. Introduction 1.1. Let M be a minimal surface of general type. Assume that the space of canonical 0 0 sections H (M; KM ) of M is non-trivial. Let N = dimCH (M; KM ) = pg, where pg is the geometric genus. The canonical map is defined to be in general a rational N−1 map ΦKM : M 99K P . For a surface, this is the most natural rational mapping to study if it is non-trivial. Assume that ΦKM is generically finite with degree d. It is well-known from the work of Beauville [B], that d := deg ΦKM 6 36: We call such degree the canonical degree of the surface, and regard it 0 if the canonical mapping does not exist or is not generically finite. The following open problem is an immediate consequence of the work of [B] and is implicitly hinted there. Problem What is the optimal canonical degree of a minimal surface of general type? Is there a minimal surface of general type with canonical degree 36? Though the problem is natural and well-known, the answer remains elusive since the 70's.
    [Show full text]
  • Topological Paths, Cycles and Spanning Trees in Infinite Graphs
    Topological Paths, Cycles and Spanning Trees in Infinite Graphs Reinhard Diestel Daniela K¨uhn Abstract We study topological versions of paths, cycles and spanning trees in in- finite graphs with ends that allow more comprehensive generalizations of finite results than their standard notions. For some graphs it turns out that best results are obtained not for the standard space consist- ing of the graph and all its ends, but for one where only its topological ends are added as new points, while rays from other ends are made to converge to certain vertices. 1Introduction This paper is part of an on-going project in which we seek to explore how standard facts about paths and cycles in finite graphs can best be generalized to infinite graphs. The basic idea is that such generalizations can, and should, involve the ends of an infinite graph on a par with its other points (vertices or inner points of edges), both as endpoints of paths and as inner points of paths or cycles. To implement this idea we define paths and cycles topologically: in the space G consisting of a graph G together with its ends, we consider arcs (homeomorphic images of [0, 1]) instead of paths, and circles (homeomorphic images of the unit circle) instead of cycles. The topological version of a spanning tree, then, will be a path-connected subset of G that contains its vertices and ends but does not contain any circles. Let us look at an example. The double ladder L shown in Figure 1 has two ends, and its two sides (the top double ray R and the bottom double ray Q) will form a circle D with these ends: in the standard topology on L (to be defined later), every left-going ray converges to ω, while every right- going ray converges to ω.
    [Show full text]
  • [DRAFT] a Peripatetic Course in Algebraic Topology
    [DRAFT] A Peripatetic Course in Algebraic Topology Julian Salazar [email protected]• http://slzr.me July 22, 2016 Abstract These notes are based on lectures in algebraic topology taught by Peter May and Henry Chan at the 2016 University of Chicago Math REU. They are loosely chrono- logical, having been reorganized for my benefit and significantly annotated by my personal exposition, plus solutions to in-class/HW exercises, plus content from read- ings (from May’s Finite Book), books (e.g. May’s Concise Course, Munkres’ Elements of Algebraic Topology, and Hatcher’s Algebraic Topology), Wikipedia, etc. I Foundations + Weeks 1 to 33 1 Topological notions3 1.1 Topological spaces.................................3 1.2 Separation properties...............................4 1.3 Continuity and operations on spaces......................4 2 Algebraic notions5 2.1 Rings and modules................................6 2.2 Tensor products..................................7 3 Categorical notions 11 3.1 Categories..................................... 11 3.2 Functors...................................... 13 3.3 Natural transformations............................. 15 3.4 [DRAFT] Universal properties.......................... 17 3.5 Adjoint functors.................................. 20 1 4 The fundamental group 21 4.1 Connectedness and paths............................. 21 4.2 Homotopy and homotopy equivalence..................... 22 4.3 The fundamental group.............................. 24 4.4 Applications.................................... 26
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • The Fixed-Point Property for Represented Spaces Mathieu Hoyrup
    The fixed-point property for represented spaces Mathieu Hoyrup To cite this version: Mathieu Hoyrup. The fixed-point property for represented spaces. 2021. hal-03117745v1 HAL Id: hal-03117745 https://hal.inria.fr/hal-03117745v1 Preprint submitted on 21 Jan 2021 (v1), last revised 28 Jan 2021 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The fixed-point property for represented spaces Mathieu Hoyrup Universit´ede Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] January 21, 2021 Abstract We investigate which represented spaces enjoy the fixed-point property, which is the property that every continuous multi-valued function has a fixed-point. We study the basic theory of this notion and of its uniform version. We provide a complete characterization of countable-based spaces with the fixed-point property, showing that they are exactly the pointed !-continuous dcpos. We prove that the spaces whose lattice of open sets enjoys the fixed-point property are exactly the countably-based spaces. While the role played by fixed-point free functions in the diagonal argument is well-known, we show how it can be adapted to fixed-point free multi-valued functions, and apply the technique to identify the base-complexity of the Kleene-Kreisel spaces, which was an open problem.
    [Show full text]
  • ON the CONSTRUCTION of NEW TOPOLOGICAL SPACES from EXISTING ONES Consider a Function F
    ON THE CONSTRUCTION OF NEW TOPOLOGICAL SPACES FROM EXISTING ONES EMILY RIEHL Abstract. In this note, we introduce a guiding principle to define topologies for a wide variety of spaces built from existing topological spaces. The topolo- gies so-constructed will have a universal property taking one of two forms. If the topology is the coarsest so that a certain condition holds, we will give an elementary characterization of all continuous functions taking values in this new space. Alternatively, if the topology is the finest so that a certain condi- tion holds, we will characterize all continuous functions whose domain is the new space. Consider a function f : X ! Y between a pair of sets. If Y is a topological space, we could define a topology on X by asking that it is the coarsest topology so that f is continuous. (The finest topology making f continuous is the discrete topology.) Explicitly, a subbasis of open sets of X is given by the preimages of open sets of Y . With this definition, a function W ! X, where W is some other space, is continuous if and only if the composite function W ! Y is continuous. On the other hand, if X is assumed to be a topological space, we could define a topology on Y by asking that it is the finest topology so that f is continuous. (The coarsest topology making f continuous is the indiscrete topology.) Explicitly, a subset of Y is open if and only if its preimage in X is open. With this definition, a function Y ! Z, where Z is some other space, is continuous if and only if the composite function X ! Z is continuous.
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Admissibly Represented Spaces and Qcb-Spaces
    Admissibly Represented Spaces and Qcb-Spaces∗ Matthias Schr¨oder Abstract A basic concept of Type Two Theory of Effectivity (TTE) is the notion of an admissibly represented space. Admissibly represented spaces are closely related to qcb-spaces. The latter form a well-behaved subclass of topological spaces. We give a survey of basic facts about Type Two Theory of Effectivity, admissibly represented spaces, qcb-spaces and effective qcb-spaces. Moreover, we discuss the relationship of qcb-spaces to other categories relevant to Computable Analysis. 1 Introduction Computable Analysis investigates computability on real numbers and related spaces. Type Two Theory of Effectivity (TTE) constitutes a popular approach to Com- putable Analysis, providing a rigorous computational framework for non-discrete spaces with cardinality of the continuum (cf. [48, 49]). The basic tool of this frame- work are representations. A representation equips the objects of a given space with names, giving rise to the concept of a represented space. Computable functions be- tween represented spaces are those which are realized by a computable function on the names. The ensuing category of represented spaces and computable functions enjoys excellent closure properties. Any represented space is equipped with a natural topology, turning it into a arXiv:2004.09450v1 [cs.LO] 20 Apr 2020 qcb-space. Qcb-spaces form a subclass of topological spaces with a remarkably rich structure. For example it is cartesian closed, hence products and function spaces can be formed. Admissibility is a notion of topological well-behavedness for representations. The category of admissibly represented spaces and continuously realizable functions is equivalent to the category QCB0 of qcb-spaces with the T0-property.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Homology of Path Complexes and Hypergraphs
    Homology of path complexes and hypergraphs Alexander Grigor’yan Rolando Jimenez Department of Mathematics Instituto de Matematicas University of Bielefeld UNAM, Unidad Oaxaca 33501 Bielefeld, Germany 68000 Oaxaca, Mexico Yuri Muranov Shing-Tung Yau Faculty of Mathematics and Department of Mathematics Computer Science Harvard University University of Warmia and Mazury Cambridge MA 02138, USA 10-710 Olsztyn, Poland March 2019 Abstract The path complex and its homology were defined in the previous papers of authors. The theory of path complexes is a natural discrete generalization of the theory of simplicial complexes and the homology of path complexes provide homotopy invariant homology theory of digraphs and (nondirected) graphs. In the paper we study the homology theory of path complexes. In particular, we describe functorial properties of paths complexes, introduce notion of homo- topy for path complexes and prove the homotopy invariance of path homology groups. We prove also several theorems that are similar to the results of classical homology theory of simplicial complexes. Then we apply obtained results for construction homology theories on various categories of hypergraphs. We de- scribe basic properties of these homology theories and relations between them. As a particular case, these results give new homology theories on the category of simplicial complexes. Contents 1 Introduction 2 2 Path complexes on finite sets 2 3 Homotopy theory for path complexes 8 4 Relative path homology groups 13 5 The path homology of hypergraphs. 14 1 1 Introduction In this paper we study functorial and homotopy properties of path complexes that were introduced in [7] and [9] as a natural discrete generalization of the notion of a simplicial complex.
    [Show full text]