Presentazione Standard Di Powerpoint
Total Page:16
File Type:pdf, Size:1020Kb
Geographic distribution of the family Rhaphidophoridae (Orthoptera, Grylloacridoidea) 60 2 40 1 Dolichopodainae Aemodogryllinae 20 Troglophilinae Ceuthophilinae Rhaphidophorinae Gammarotettiginae 3 0 Tropidischiinae 4 Macropathinae 165° 90° 0° 90° 180° Macropathinae Aemodigrillinae e Rhaphidophorinae Udenus wnigrum Tachycines sp. Heteromallus cavicola Rhaphidophora sp. Spelaeiacris tabulae Dolichopodinae - Troglophilinae Dolichopoda ligustica Dolichopoda laetitiae Dolichopoda sbordonii Troglophilus sp. Dolichopoda: geographical distribution Specie italiane e francesi analizzate D.ligustica D. linderi D. cyrnensis D. bormansi D. capreensis D. muceddai D. palpata Specie greche analizzate D. remyi D. thasosensis D. hussoni D. annae D. graeca D. steriotisi D. kiriakii D. lustriae D. giachinoi D. makrikapa D. gasparoi D. vandeli D. ithakii D. patrizii D. pavesii D. petrochilosi D. cassagnaui D. insignis D. giulianae D. dalensi D. naxia D. sp. D. calidnae D. unicolor D. paraskevi D. sp. Specie anatoliche e caucasiche analizzate D. euxina D. hyrcana D. noctivaga D. lycia D. sbordonii Sono state usate sequenze nucleotidiche di tre frammenti di DNA mitocondriale corrispondenti alle subunità piccola e grande del DNA ribosomiale (12S e 16S rRNA) e alla subunità I della Citocromo- Ossidasi. Sono state inoltre sequenziate circa 700 basi della subunità grande del DNA nucleare ribosomiale (28S rRNA). E. insolitus H. cumberlandicus T. cavicola D. linderi 1.00 D.ligustica 0.99 D.laetitiae MP, ML e analisi 1.00 1.00 Clade A Bayesiana hanno 1.00 D. geniculata 1.00 0.99 D. aegilion D. baccettii prodotto la stessa 0.99 0.99 1.00 1.00 D. schiavazzii La filogenesi molecolare è 0.98 1.00 topologia 1.00 D. cyrnensis 1.00 Clade B 0.99 0.94 D. bormansi congruente con la tassonomia D. muceddai 1.00 D. capreensis tradizionale e riflette un D. palpata 1.00 D. araneiformis D. thasosensis pattern filogeografico 1.00 0.97 D. annae 1.00 0.97 D. hussoni Clade C 1.00 D. remyi 1.001.00 D. matsakisi 0.97 D. dalensi 0.96 D. sp. TAY Clade D D. lustriae D. pavesii 1.00 D. gasparoi 0.85 0.85 1.00 D. ithakii 1.00 1.00 D. patrizii 0.94 D. giachinoi Clade E D. graeca 1.00 D. steriotisi D. kiriakii 1.00 0.99 D. makrikapa D. cassagnaui 0.99 1.00 D. insignis 1.00 D. petrochilosi Clade F 0.99 0.99 D. vandeli D. sp. PAR 0.99 D. sp. KASb 1.00 D. unicolor 1.00 D. naxia 0.99 1.00 0.99 0.98 D. calidnae 1.00 D. giulianae Clade G 1.00 D. paraskevi 1.00 D. sp. Creta 1.00 D. euxina 1.00 0.90 1.00 0.91 D. noctivaga Clade H D. hyrcana 1.00 1.00 D. sbordonii D. lyciae Clade I D. linderi Mediterraneo Occidentale 1.00 D.ligustica 1.00 0.99 D.laetitiae Clade A 1.00 Clade A D. geniculata 1.00 0.99 D. aegilion D. baccettii 0.99 0.98 1.00 D. schiavazzii 1.00 1.00 D. cyrnensis 1.00 1.00 D. bormansi Clade B 0.99 Clade B 0.94 D. muceddai 1.00 D. capreensis D. palpata 1.00 D. araneiformis Clade C Clade D Clade E Clade F Clade G Clade H Clade I Grecia Clade C Clade A Clade E Clade B D. thasosensis 1.00 D. annae 0.97 1.00 D. hussoni 0.97 1.00 D. remyi Clade C Clade 1.00 1.00 D. matsakisi Clade D D. dalensi 0.96 0.97 D. sp. TAY D. lustriae D Clade D. pavesii 1.00 D. gasparoi 0.85 1.00 D. ithakii 0.85 1.00 D. patrizii 1.00 0.94 D. giachinoi D. graeca E Clade 1.00 D. steriotisi D. kiriakii 1.00 0.99 D. makrikapa D. cassagnaui 0.99 D. insignis 1.00 1.00 D. petrochilosi 0.99 0.99 D. vandeli D. sp. PAR F Clade 0.99 D. sp. KASb Clade F 1.00 D. unicolor 1.00 D. naxia 0.99 1.00 D. calidnae 0.98 Clade G 1.00 D. giulianae Clade G Clade 1.00 D. paraskevi 1.00 D. sp. Crete Clade H Clade I Turchia e Caucaso Clade H D. euxina D. hyrcana D. noctivaga Clade A Clade I D. lycia Clade B D. sbordonii Clade C Clade D Clade E Clade F Clade G 0.99 1.00 D. euxina 1.00 1.00 0.90 Clade H D. noctivaga 0.91 D. hyrcana 1.00 1.00 D. sbordonii Clade I D. lycia La separazione dell’isola del Giglio dal continente è avvenuta durante una trasgressione marina (interglacialeIl LikelihoodGunzratio-Mindel)test hae puòindicatoesserechedatataesistea una differenza circasignificativa0.700 – 1nel.0 milionetasso di annievoluzionefa (Lipparini,di ogni1976gene; analizzato fra Mazzanti,l’intero gruppo1983). di specie considerate I tempi di divergenza sono stati stimati assumendo un orologio molecolare rilassato e conducendo un’analisi di tipo bayesiano (BEAST 1.47; Drummond & Rambaut , 2007) Come punti di calibrazioneD.baccettii abbiamo usato due eventi paleogeografici ben datati: D.aegilion a)L’isolamento dell’isola del Giglio, nell’arcipelago Toscano, avvenuta circa 1 milione di anni fa (transizione Calabro-Ionica) Gigliob)L’isolamento island dell’isola di Creta dal vicino continente, avvenuta circa 5.3 milioni di anni fa Clade A Clade B Messinian salinity crisissalinity Clade C Clade D Uplift of Anatolian Plateau Clade E Clade F Clade G Clade H Clade I Coronaviruses (CoVs) are enveloped, positive‐sensed, singlestranded RNA viruses belonging to the Coronaviridae family. They have been categorized based on antigenic properties and phylogenetic analyses in three main groups: (a) alpha‐CoVs, mainly responsible for gastrointestinal disorders; (b) beta‐CoVs, that include: (i) bat coronavirus, (ii) the human severe acute respiratory syndrome (SARS) virus, (iii) the Middle Eastern respiratory syndrome (MERS) virus; (c) gamma‐CoVs, that mainly infect avian species. Some variants of CoVs are associated with outbreaks, some others are continuously circulating and cause mostly mild respiratory infections (e.g., the common cold). The most well known of these CoVs is the SARS‐CoV, which between 2002 and 2003 was responsible to cause an outbreak that spread around the world and resulted in over 8000 cases and 774 deaths, with a case fatality rate of around 9% to 11%.3 In 2012, a novel CoV, MERS‐CoV, causing severe respiratory symptoms was identified. Very recently, in December 2019, a novel beta‐CoV, was responsible of a new illness, first detected in Wuhan, China. We now know this to be another outbreak of CoV in humans (the 7th), that was recently renamed as SARS‐CoV‐2. The origin of the virus is still unclear, however, genomic analysis suggests nCoV is most closely related to viruses previously identified in bats. While the outbreak seems to be centered in Wuhan, which is now under quarantine, the virus has spread throughout China and abroad, including Western and South‐Eastern Pacific regions, European regions, Eastern Mediterranean regions as well as many states in the United States of America.8 It comes amid signs of the virus's shift away from its origins in China, with Italy, Iran, and South Korea emerging as the other countries hit hardest by the deadly disease. Giovanetti et al., 2020 DOI: 10.1002/jmv.25773 Thus, to better understand the emergence of the recent SARS‐CoV‐2 epidemic in Italy, we analyzed a larger and updated dataset of recently released data of the COVID‐2019 epidemic to improve more effective intervention strategies. The dataset comprised (n = 141) complete genomes sequences from the current (2019‐2020) SARS‐CoV‐2 epidemic retrieved from GISAID (https://www.gisaid.org/) database. The alignment was performed using MAFFT online program. The complete dataset was assessed for the presence of phylogenetic signal by applying the likelihood mapping analysis implemented in the IQ‐TREE 1.6.8 software (http://www.iqtree.org).11 A maximum likelihood (ML) phylogeny was reconstructed using IQ‐TREE 1.6.8 software under the general time‐reversible nucleotide substitution model with a proportion of invariant sites (GTR+I) which was inferred in jModelTest (https://github.com/ddarriba/jmodeltest2) as the best fitting model.12 Giovanetti et al., 2020 DOI: 10.1002/jmv.25773 Maximum likelihood phylogeny, estimated from complete and near‐complete coronavirus (CoV) genomes using genome data available in GISAID. Colors represent different locations (panels A and B represent expansions of the clades containing the Italian CoV isolates [green]) in clade 1 closely related with sequence from England, in clade B closely related with sequences from Germany Giovanetti et al., 2020 DOI: 10.1002/jmv.25773 We found that two isolates from Italy (EPI_ISL_410546 a Chinese tourist from Hubei Province, and EPI_ISL_412974 the first Italian case isolate in Rome Italy) fall within a clade (BS = 94%) (Figure 1A clade 1) including sequences from several countries as China, Japan, Singapore, England, Australia, and Canada. However, it is important to note that sequences from China are positioned basally to this first clade, reinforcing the idea that the first introduction event could be mediated, as suspected by China. We also identified that one Italian strain (EPI_ISL_412973 from the province of Lombardy) isolated in February 2020, grouped separately into a second clade (Figure 1B clade 2) including isolates from Germany, Finland, Switzerland, and Mexico. Phylogenetic analyses further suggest that the CoV epidemic might have been reintroduce to the country via Germany, since the basal sequence of this clade is a case that emerged in Munich in Germany in January 2020, highlighting a complex dynamic of transmission and a tight connection within European countries. Our results indicate that the SARS‐CoV‐2 circulation in Italy likely started from different multiple introductions from China and Germany (Figure 1, clades 1 and 2) (suggesting a possible European linkage) followed by autochthonous transmission within Italy.