The Australopithecines – an Extinct Group of Human Ancestors: My Scientifi C Interest in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Australopithecines – an Extinct Group of Human Ancestors: My Scientifi C Interest in South Africa Werkwinkel 12(1), 2017, pp. 7-17 © Department of Dutch and South African Studies Faculty of English, Adam Mickiewicz University, Poznań, Poland DOI: 10.1515/werk-2017-0001 The Australopithecines – An Extinct Group of Human Ancestors: My Scientifi c Interest in South Africa KATARZYNA A. KASZYCKA Adam Mickiewicz University Zakład Ekologii Ewolucyjnej Człowieka Instytut Antropologii Uniwersytet im. Adama Mickiewicza ul. Umultowska 89 61-614 Poznań, Poland [email protected] Abstract: I introduce the subject of my research interest in South Africa – the australo- pithecines – a group of bipedal, small-brained and large-toothed creatures from the Plio- -Pleistocene, from which the human genus arose. I then briefl y discuss various topics of my research, concerning: (1) Taxonomic status and morphological description of the ex- tinct human relative from the Kromdraai site (Australopithecus robustus); (2) Graphic recon- struction of the partial skull from Kromdraai – specimen numbered TM 1517; (3) Assess- ment of size sexual dimorphism of the South African australopithecines (Australopithecus robustus and Australopithecus africanus), which, in terms of facial features, was pronounced – being almost gorilla-sized; (4) Social behavior of a fossil hominid species from around 2 million years ago, which, in terms of the social structure, was most likely a multimale- -multifemale one; and (5) An event from the history of paleoanthropology, concerning the content of the 1924/25 photographs of the Taung Child (Australopithecus africanus) – the fi rst australopithecine skull discovered. Keywords: paleoanthropology; South Africa; australopiths; human evolution werkwinkel 12(1) 2017 8 Katarzyna A. Kaszycka My scientifi c interests have for many years been focused on paleoanthropol- ogy 1 and, in particular, the early African human ancestors. This interest was already begun by the eighth grade of elementary school when the Po- lish translation of the book Man, Time, and Fossils by Ruth Moore fell into my hands. After spending a few years studying biology at the Faculty of Biol- ogy, University of Warsaw, I transferred to Adam Mickiewicz University in Poznań to study biological anthropology. There, I completed my MSc degree writing the thesis entitled “Diversity of the Australopithecines – Taxonomic and Anthropogenetic Consequences” under the supervision of Professor Jan Strzałko. My interests in South Africa arose from a combination of circumstances. In 1990 I enrolled as a graduate student of reputed paleoanthropologist – Profes- sor Milford H. Wolpoff at the University of Michigan, Ann Arbor, Michigan. After spending over three years furthering my studies there, the opportunity arose to travel to South Africa – the place of the fi rst discovery and a repository of the australopithecine fossils – to study the original collections and to make aus- tralopiths the subject of my doctoral thesis. I undertook my fi rst journey there in 1994 – the same momentous year of the fi rst democratic general election and the election of Nelson Mandela as President – and so began my ‘adventure’ with South Africa. 1. The australopiths – the subject of my interest The fossil and genetic evidence show that the history of bipedal primates (hominids) goes back about 6-7 million years. At that time in Africa there lived a common ancestor, from which two evolutionary lineages arose – one that led to us – humans (via the now extinct australopithecines), and the other – to our closest living relatives – the chimpanzees. It is among the australopithecines that the direct ancestors of the human genus should be sought. The term ‘australopithecines’ refers to a group of the Plio-Pleistocene species (dated from 4.0 to 1.2 million years ago) including the extinct ancestors and rela- tives of humans, who lived in broad areas of Africa – from Ethiopia (in the East) to the Republic of South Africa (in the South). While the australopithecines were already bipedal, their brains remained small (approximately 500 cc in volume, compared to an average of about 1,350 cc for modern humans). They had pow- erful jaws and large back teeth adapted for grinding and chewing hard, tough 1 Paleoanthropology – the study of human ancestors from fossils (fossils are the preserved remains of organisms from the distant past). 12(1) 2017 werkwinkel The Australopithecines – An Extinct Group of Human Ancestors... 9 Figure 1. Two australopithecine skulls from South Africa: (left) Australopithecus africanus from Sterkfontein (gracile form) vs. (right) Australopithecus robustus from Swartkrans (robust form) (photos by K.A. Kaszycka) foods. In relation to the australopithecines two descriptive terms are commonly used – the so-called “gracile” and “robust” forms 2 (see Fig. 1). 2. Historic background The history of the South African discoveries of early hominids dates to 1924 when Australian-born anatomist – Professor Raymond Dart from WITS Univer- sity in Johannesburg, obtained the fi rst fossil remains from the Taung site. Dart (1925) named the new species Australopithecus africanus – the “man-ape of South Africa.” We now know of a fair number of fossil-bearing sites across the country. The discovered remains are dated at around 3.0-1.5 million years old, and came mainly from the dolomite caves near Johannesburg (see Fig. 2), located in the Cradle of Humankind – a South African National Heritage site. Aside from Taung, South African australopithecines were also recovered (during the period of Broom’s and Dart’s excavations) from: Sterkfontein (Broom 1936), Kromdraai (Broom 1938), Makapansgat (Dart 1948) and Swartkrans (Broom 1949). In more recent times, several important discoveries were made at Gladysvale (Berger 1992), Gondolin (Menter et al. 1999), Drimolen (Keyser 2000), Cooper’s (Steinin- ger et al. 2008), and Malapa (Berger et al. 2010). 2 Traditionally the “gracile” (lightly built) and “robust” forms of the australopithecines (australo- piths) refer to differences in shape of the skull, size of face, jaws and teeth, as well as diet. werkwinkel 12(1) 2017 10 Katarzyna A. Kaszycka Figure 2. Sterkfontein cave site – place of discovery of Australopithecus africanus (photo by K.A. Kaszycka) Apart from the “Taung Child” (a partial skull together with a natural en- docast 3 of the brain), other best known australopith individuals, who received nicknames, are: “Mrs. Ples” (complete cranium), found by Robert Broom (1947) at Sterkfontein, and “Little Foot” (a spectacular near-complete skeleton), whose bones were fi rst found in 1994 in a box, and subsequently in-situ between 1997-99 by Ron Clarke (1998), also within the Sterkfontein cave system. The most recent discovery included the remains of two individuals (which were given a new spe- cies name – Australopithecus sediba), found at Malapa by Lee Berger in 2008. 3. Status of the Kromdraai hominids My doctoral thesis (completed at the University of the Witwatersrand, Johan- nesburg, under the supervision of Professors Milford Wolpoff and Maciej Hen- neberg) was entitled “Status of Kromdraai: Cranial, Mandibular and Dental Morphology, Systematic Relationships, and Signifi cance of the Kromdraai Hom- inids.” The chosen subject concerned the taxonomic status of a group of robust australopithecines from the Kromdraai site (from which the type specimen 4 of Australopithecus robustus derives), as well their place in human phylogeny. In the paleoanthropological literature there was no then consensus regarding the 3 Endocast – the internal cast of a braincase. 4 Type specimen – the original specimen from which a description of a new species is given. 12(1) 2017 werkwinkel The Australopithecines – An Extinct Group of Human Ancestors... 11 taxonomic status of the robust australopithecines from Kromdraai as they were considered: the same, or a different species than other robust australopiths from the nearby Swartkrans site; a unique ancestor of hominids from Swartkrans; the possible ancestor of Swartkrans hominids and East African Australopithecus boi- sei clade 5; or even a link with the earliest Homo. Focusing on variation, I tested two null hypotheses, attempting to fi nd an- swers to some fundamental questions: What is the specifi c relationship of the hominids from Kromdraai to similar remains from Swartkrans (a single or two species?), and how the Kromdraai australopithecines relate to the origin of the other robust australopiths (including Australopithecus boisei) and the earliest Homo. The answer to the fi rst question was obtained from analysis of the rel- evant morphology and adopting the Evolutionary Species Concept: “A species is a single lineage of ancestral descendant populations of organisms which main- tains its identity from other such lineages and which has its own evolutionary tendencies and historical fate” (Wiley 1978: 18). The answer to the question re- garding the phylogenetic relationships between the taxa 6 studied was revealed through cladistic 7 analysis using the PAUP (Phylogenetic Analysis Using Parsi- mony) computational program in attempting to develop hypotheses of ancestor- -descendant relationships. On the basis of the then available evidence, I concluded that Kromdraai is the most closely related sample to Swartkrans, being most likely an earlier, ancestral representative of the same species – Australopithecus robustus. At the same time, Kromdraai, being more plesiomorphic 8 (Australopithecus africanus-like) than the other robust australopiths (i.e., the Swartkrans sample and Australopithecus boisei), fi ts morphologically as an ancestor
Recommended publications
  • Dental Pathology, Wear and Developmental Defects in South African Hominins
    Dental pathology, wear and developmental defects in South African hominins IAN EDWARD TOWLE A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy June 2017 Abstract Studying different types of dental pathology, wear, and developmental defects can allow inferences into diet and behaviour in a variety of ways. In this project data on these different variables were collected for South African hominins and compared with extant primates. The species studied include Paranthropus robustus, Australopithecus africanus, A. sediba, early Homo, Homo naledi, baboons, chimpanzees and gorillas. Macroscopic examination of each specimen was performed, with a 10X hand lens used to verify certain pathologies. Variables recorded include antemortem chipping, enamel hypoplasia, caries, occlusal wear, tertiary dentine, abscesses, and periodontal disease. Clear differences in frequencies were found in the different South African hominin species. Homo naledi displays high rates of chipping, especially small fractures above molar wear facets, likely reflecting a diet containing high levels of contaminants. Other noteworthy results include the high levels of pitting enamel hypoplasia in P. robustus molars compared to other species, likely due to a species-specific enamel formation property or developmental disturbance. The low rates of chipping in P. robustus does not fit with this species being a hard food specialist. Instead, the wear best supports a diet of low-quality tough vegetation. Australopithecus africanus likely had a broad diet, with angled molar wear, lack of caries, and high chipping frequencies supporting this conclusion. Seven new carious lesions are described, two from H. naledi and five P.
    [Show full text]
  • The Partial Skeleton Stw 431 from Sterkfontein – Is It Time to Rethink the Plio-Pleistocene Hominin Diversity in South Africa?
    doie-pub 10.4436/JASS.98020 ahead of print JASs Reports doi: 10.4436/jass.89003 Journal of Anthropological Sciences Vol. 98 (2020), pp. 73-88 The partial skeleton StW 431 from Sterkfontein – Is it time to rethink the Plio-Pleistocene hominin diversity in South Africa? Gabriele A. Macho1, Cinzia Fornai 2, Christine Tardieu3, Philip Hopley4, Martin Haeusler5 & Michel Toussaint6 1) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX, England; School of Archaeology, University of Oxford, Oxford OX1 3QY, England email: [email protected]; [email protected] 2) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3) Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 4) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX; Department of Earth Sciences, University College London, London, WC1E 6BT, England 5) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 6) retired palaeoanthropologist, Belgium email: [email protected] Summary - The discovery of the nearly complete Plio-Pleistocene skeleton StW 573 Australopithecus prometheus from Sterkfontein Member 2, South Africa, has intensified debates as to whether Sterkfontein Member 4 contains a hominin species other than Australopithecus africanus. For example, it has recently been suggested that the partial skeleton StW 431 should be removed from the A. africanus hypodigm and be placed into A. prometheus. Here we re-evaluate this latter proposition, using published information and new comparative data. Although both StW 573 and StW 431 are apparently comparable in their arboreal (i.e., climbing) and bipedal adaptations, they also show significant morphological differences.
    [Show full text]
  • Recent Origin of Low Trabecular Bone Density in Modern Humans
    Recent origin of low trabecular bone density in modern humans Habiba Chirchira,b,1, Tracy L. Kivellc,d, Christopher B. Ruffe, Jean-Jacques Hublind, Kristian J. Carlsonf,g, Bernhard Zipfelf, and Brian G. Richmonda,b,h,1 aCenter for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052; bHuman Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cAnimal Postcranial Evolution Laboratory, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom; dDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; eCenter for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD 21205; fEvolutionary Studies Institute, The University of the Witwatersrand, Braamfontein 2000 Johannesburg, South Africa; gDepartment of Anthropology, Indiana University, Bloomington, IN 47405; and hDivision of Anthropology, American Museum of Natural History, New York, NY 10024 Edited by Erik Trinkaus, Washington University, St. Louis, MO, and approved November 26, 2014 (received for review June 23, 2014) Humans are unique, compared with our closest living relatives humans relative to earlier hominins generally has been attributed (chimpanzees) and early fossil hominins, in having an enlarged to a decrease in daily physical activity via technological and body size and lower limb joint surfaces in combination with a rel- cultural innovations (6, 10, 13–15, 19–22). atively gracile skeleton (i.e., lower bone mass for our body size). There also is evidence that increased activity level and me- Some analyses have observed that in at least a few anatomical chanical loading increases trabecular bone mineral density within regions modern humans today appear to have relatively low tra- limb bones (ref.
    [Show full text]
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Hands-On Human Evolution: a Laboratory Based Approach
    Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution.
    [Show full text]
  • Human Origins in South Africa
    Human Origins in South Africa September 8-22, 2018 (15 days) with paleoanthropologist Ian Tattersall © Thomas T. oin Dr. Ian Tattersall, curator emeritus at the Makapansgat American Museum of Natural History and renowned SOUTH AFRICA Valley & Jpaleoanthropologist and author, on this diverse South African # = Hotel nights 2 Polokwane Mapungubwe adventure featuring fascinating paleontological localities; evocative Sterkfontein Caves 1 Pretoria historical sites and modern cities; sublime mountain, veld, and coastal scenery; wildlife viewing and photography opportunities; delicious cuisine; and 4- and 5-star accommodations. Travel from 2 Magaliesberg the lovely Magaliesberg Mountains to early human sites in the Johannesburg “Cradle of Humankind,” such as Sterkfontein Caves, and as far Hoedspruit afield as the Makapansgat Valley, plus archaeological sites in the Mapungubwe Cultural Landscape and the West Coast Fossil Park. Visit Blombos Museum of Archaeology and Pinnacle Point Caves, West Coast Fossil Park 4 Cape Town 2 Kapama Game with private tours of both by a guest archaeologist. Spend two Reserve nights at a luxurious camp to explore the Kapama Game Reserve, Cape Winelands enjoying morning and afternoon game drives. Take guided tours Darling 2 George of Pretoria and Cape Town, and tour the Cape Winelands, where you will sample some of South Africa’s most renowned wines. Indian Ocean Cango Dr. Tattersall and local guides will accompany you throughout, Pinnacle Point Caves Atlantic Ocean Caves weaving together the threads of past and present that make up the rich tapestry of human evolution. Cover, Cape Town. Below, Mapungubwe Hill, Mapungubwe National Park. Bottom, the entrance to the Sterkfontein Caves. Itinerary (B)= Breakfast, (L)= Lunch, (D)= Dinner Saturday, September 8, 2018: Depart Home Depart home on independent flights to Johannesburg, South Africa.
    [Show full text]
  • Neither Chimpanzee Nor Human, Ardipithecus Reveals the Surprising Ancestry of Both Tim D
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both Tim D. Whitea,1, C. Owen Lovejoyb, Berhane Asfawc, Joshua P. Carlsona, and Gen Suwad,1 aDepartment of Integrative Biology, Human Evolution Research Center, University of California, Berkeley, CA 94720; bDepartment of Anthropology, School of Biomedical Sciences, Kent State University, Kent, OH 44242–0001; cRift Valley Research Service, Addis Ababa, Ethiopia; and dThe University Museum, The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033, Japan Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved September 10, 2014 (received for review April 25, 2014) Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors—and our closest living relatives—evolved. human evolution | Australopithecus | hominid | Ethiopia “...the stock whence two or more species have chimpanzees, can serve as adequate repre- (5). Indeed, a widely used textbook still pro- sprung, need in no respect be intermediate sentations of the ancestral past. claims that, “Overall, Au. afarensis seems very between those species.” much like a missing link between the living Background T. H. Huxley, 1860 (1) Africanapesandlaterhomininsinitsdental, ’ Darwin s human evolution scenario attemp- cranial, and skeletal morphology” (6). Charles Darwin famously suggested that ted to explain hominid tool use, bipedality, Australopithecus can no longer be legiti- Africa was humanity’s most probable birth enlarged brains, and reduced canine teeth (2).
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Herries-And-Adams-20
    Journal of Human Evolution xxx (2013) 1e6 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol News and views Clarifying the context, dating and age range of the Gondolin hominins and Paranthropus in South Africa Andy I.R. Herries a,*, Justin W. Adams b a Australian Archaeomagnetism Laboratory, Department of Archaeology, Environment and Community Planning, Faculty of Humanities and Social Sciences, La Trobe University, Melbourne Campus, Bundoora, 3086 VIC, Australia b Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Melbourne, 3800 VIC, Australia article info Article history: necessary to reply on fauna estimations for the age of these de- Received 1 March 2013 posits based on correlations with the other end of the African Accepted 7 June 2013 continent; and with little data existing in between. Moreover, Available online xxx recent geochronological studies on the South African caves has shown that many dates based on biochronological analysis with Keywords: Geochronology sites in East Africa are up to half a million years too old (Herries Paranthropus et al., 2010; Herries and Shaw, 2011). This discordance may relate Gondolin to South Africa functioning as both a continuous population refuge Sterkfontein and geographic origin for several Pleistocene and extant lineages Palaeokarst (see summary in Lorenzen et al., 2012; also Pickford, 2004). This Swartkrans Electron spin resonance expanding dataset on the complex, dynamic biogeography of Af- rican mammals precludes assuming that the South and East African sites, separated by 3000e4000 km, had homologous first/last appearance dates of species/lineages.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • Title: Drimolen Crania Indicate Contemporaneity of Australopithecus, Paranthropus and Early Homo Erectus in S
    Submitted Manuscript: Confidential Title: Drimolen crania indicate contemporaneity of Australopithecus, Paranthropus and early Homo erectus in S. Africa Authors: Andy I.R. Herries1,2*†, Jesse M. Martin1†, A.B. Leece1†, Justin W. Adams3,2†, Giovanni Boschian4,2†, Renaud Joannes-Boyau5,2, Tara R. Edwards1, Tom Mallett1, Jason Massey3,6, Ashleigh Murszewski1, Simon Neuebauer7, Robyn Pickering8.9, David Strait10,2, Brian J. Armstrong2, Stephanie Baker2, Matthew V. Caruana2, Tim Denham11, John Hellstrom12, Jacopo Moggi-Cecchi13, Simon Mokobane2, Paul Penzo-Kajewski1, Douglass S. Rovinsky3, Gary T. Schwartz14, Rhiannon C. Stammers1, Coen Wilson1, Jon Woodhead12, Colin Menter13 Affiliations: 1. Palaeoscience Labs, Dept. Archaeology and History, La Trobe University, Bundoora, 3086, VIC, Australia. 2. Palaeo-Research Institute, University of Johannesburg, Gauteng Province, South Africa. 3. Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, VIC, Australia. 4. Department of Biology, University of Pisa, Italy 5. Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia 6. Department of Integrative Biology and Physiology, University of Minnesota Medical School, USA 7. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany. 8. Department of Geological Sciences, University of Cape Town, Western Cape, South Africa 9. Human Evolution Research Institute, University of Cape Town, Western Cape, South Africa 10. Department of Anthropology, Washington University in St. Louis, St. Louis, USA 11. Geoarchaeology Research Group, School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia 12. Earth Sciences, University of Melbourne, Australia 13. Department of Biology, University of Florence, Italy 14. Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, U.S.A.
    [Show full text]
  • Surface Model and Tomographic Archive of Fossil Primate and Other
    RESEARCH ARTICLE Surface Model and Tomographic Archive of Fossil Primate and Other Mammal Holotype and Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa Justin W. Adams1*, Angela Olah2,3, Matthew R. McCurry1,3, Stephany Potze4 a11111 1 Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia, 2 Department of Biological Sciences, Faculty of Sciences, Monash University, Clayton, Victoria, Australia, 3 Geosciences, Museum Victoria, Carlton, Victoria, Australia, 4 Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa * [email protected] OPEN ACCESS Citation: Adams JW, Olah A, McCurry MR, Potze S (2015) Surface Model and Tomographic Archive of Abstract Fossil Primate and Other Mammal Holotype and Nearly a century of paleontological excavation and analysis from the cave deposits of the Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS ONE Cradle of Humankind UNESCO World Heritage Site in northeastern South Africa underlies 10(10): e0139800. doi:10.1371/journal.pone.0139800 much of our understanding of the evolutionary history of hominins, other primates and other Editor: Brenda A Wilson, University of Illinois at mammal lineages in the late Pliocene and early Pleistocene of Africa. As one of few desig- Urbana-Champaign, UNITED STATES nated fossil repositories, the Plio-Pleistocene Palaeontology Section of the Ditsong National Received: January 29, 2015 Museum of Natural History (DNMNH; the former Transvaal Museum) curates much of the mammalian faunas recovered from the fossil-rich deposits of major South African hominin- Accepted: September 17, 2015 bearing localities, including the holotype and paratype specimens of many primate, carni- Published: October 6, 2015 vore, and other mammal species (Orders Primates, Carnivora, Artiodactyla, Eulipotyphla, Copyright: © 2015 Adams et al.
    [Show full text]