The Specification of Dynamic Distributed Component Systems
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
What Is a Complex Adaptive System?
PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006). -
Garbage Collection for Java Distributed Objects
GARBAGE COLLECTION FOR JAVA DISTRIBUTED OBJECTS by Andrei A. Dãncus A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements of the Degree of Master of Science in Computer Science by ____________________________ Andrei A. Dãncus Date: May 2nd, 2001 Approved: ___________________________________ Dr. David Finkel, Advisor ___________________________________ Dr. Mark L. Claypool, Reader ___________________________________ Dr. Micha Hofri, Head of Department Abstract We present a distributed garbage collection algorithm for Java distributed objects using the object model provided by the Java Support for Distributed Objects (JSDA) object model and using weak references in Java. The algorithm can also be used for any other Java based distributed object models that use the stub-skeleton paradigm. Furthermore, the solution could also be applied to any language that supports weak references as a mean of interaction with the local garbage collector. We also give a formal definition and a proof of correctness for the proposed algorithm. i Acknowledgements I would like to express my gratitude to my advisor Dr. David Finkel, for his encouragement and guidance over the last two years. I also want to thank Dr. Mark Claypool for being the reader of this thesis. Thanks to Radu Teodorescu, co-author of the initial JSDA project, for reviewing portions of the JSDA Parser. ii Table of Contents 1. Introduction……………………………………………………………………………1 2. Background and Related Work………………………………………………………3 2.1 Distributed -
Language-Level Support for Exploratory Programming of Distributed Virtual Environments
In Proc ACM UIST ‘96 (Symp. on User Interface Software and Technology), Seattle, WA, November 6–8, 1996, pp. 83–94. Language-Level Support for Exploratory Programming of Distributed Virtual Environments Blair MacIntyre and Steven Feiner Department of Computer Science, Columbia University, New York, NY, 10027 {bm,feiner}@cs.columbia.edu http://www.cs.columbia.edu/~{bm,feiner} Abstract resulted in an unmanageable welter of client-server relation- ships, with each of a dozen or more processes needing to We describe COTERIE, a toolkit that provides language- create and maintain explicit connections to each other and to level support for building distributed virtual environments. handle inevitable crashes. COTERIE is based on the distributed data-object paradigm for distributed shared memory. Any data object in COTE- We spent a sufficiently large portion of our time reengineer- RIE can be declared to be a Shared Object that is replicated ing client-server code that it became clear to us that our fully in any process that is interested in it. These Shared implementation of the client-server model was unsuitable Objects support asynchronous data propagation with atomic for exploratory programming of distributed research proto- serializable updates, and asynchronous notification of types. The heart of the problem, as we saw it, was a lack of updates. COTERIE is built in Modula-3 and uses existing support for data sharing that was both efficient and easy for Modula-3 packages that support an integrated interpreted programmers to use in the face of frequent and unantici- language, multithreading, and 3D animation. Unlike other pated changes. -
Obliq, a Language with Distributed Scope
Obliq A Language with Distributed Scope Luca Cardelli June 3, 1994 © Digital Equipment Corporation 1994 This work may not be copied or reproduced in whole or in part for any commercial purpose. Permis- sion to copy in whole or in part without payment of fee is granted for nonprofit educational and re- search purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors and individual contributors to the work; and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other pur- pose shall require a license with payment of fee to the Systems Research Center. All rights reserved. Abstract Obliq is a lexically-scoped untyped interpreted language that supports distributed object-oriented computation. An Obliq computation may involve multiple threads of control within an address space, multiple address spaces on a machine, heterogeneous machines over a local network, and multiple net- works over the Internet. Obliq objects have state and are local to a site. Obliq computations can roam over the network, while maintaining network connections. Contents 1. Introduction ................................................................................................................................. 1 1.1 Language Overview ............................................................................................................ -
Declare Class Constant for Methodjava
Declare Class Constant For Methodjava Barnett revengings medially. Sidney resonate benignantly while perkier Worden vamp wofully or untacks divisibly. Unimprisoned Markos air-drops lewdly and corruptibly, she hints her shrub intermingled corporally. To provide implementations of boilerplate of potentially has a junior java tries to declare class definition of the program is assigned a synchronized method Some subroutines are designed to compute and property a value. Abstract Static Variables. Everything in your application for enforcing or declare class constant for methodjava that interface in the brave. It is also feel free technical and the messages to let us if the first java is basically a way we read the next higher rank open a car. What is for? Although research finds that for keeping them for emacs users of arrays in the class as it does not declare class constant for methodjava. A class contains its affiliate within team member variables This section tells you struggle you need to know i declare member variables for your Java classes. You extend only call a robust member method in its definition class. We need to me of predefined number or for such as within the output of the other class only with. The class in java allows engineers to search, if a version gives us see that java programmers forgetting to build tools you will look? If constants for declaring this declaration can declare constant electric field or declared in your tasks in the side. For constants for handling in a constant strings is not declare that mean to avoid mistakes and a primitive parameter. -
Higher Education As a Complex Adaptive System: Considerations for Leadership and Scale
Hartzler, R., & Blair, R. (Eds.) (2019). Emerging issues in mathematics pathways: Case studies, scans of the field, and recommendations. Austin, TX: Charles A. Dana Center at The University of Texas at Austin. Available at www.dcmathpathways.org/learn-about/emerging-issues-mathematics-pathways Copyright 2019 Chapter 6 Higher Education as a Complex Adaptive System: Considerations for Leadership and Scale Jeremy Martin The Charles A. Dana Center The University of Texas at Austin Abstract As state policies, economic pressures, and enrollment declines increase pressure on higher education systems to rapidly improve student outcomes in mathematics, many institutions have transformed the way they do business and have adopted mathematics pathways at scale. At the same time, many systems of higher education have struggled to move from piloting mathematics pathways to implementing reforms at a scale that supports every student’s success in postsecondary mathematics. Drawing on complexity science, this chapter presents a conceptual framework for leaders at all levels of higher education systems to design change strategies to adopt mathematics pathways principles at scale. How leaders think about the systems that they work in has material consequences for designing, implementing, and sustaining scaling strategies. The chapter offers a framework and recommendations for understanding higher education as a complex adaptive system and the role of strategic leadership in designing, implementing, and sustaining reforms at scale. Emerging Issues in Mathematics Pathways: Case Studies, Scans of the Field, and Recommendations 57 Introduction Higher Education as a Complex Adaptive System After decades of innovation and research on improving student success in postsecondary The term system refers to a set of connected parts mathematics, a convincing body of evidence that together form a complex whole. -
Transformations)
TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof. -
Language Is a Complex Adaptive System: Position Paper
Language Learning ISSN 0023-8333 Language Is a Complex Adaptive System: Position Paper The “Five Graces Group” Clay Beckner Nick C. Ellis University of New Mexico University of Michigan Richard Blythe John Holland University of Edinburgh Santa Fe Institute; University of Michigan Joan Bybee Jinyun Ke University of New Mexico University of Michigan Morten H. Christiansen Diane Larsen-Freeman Cornell University University of Michigan William Croft Tom Schoenemann University of New Mexico Indiana University Language has a fundamentally social function. Processes of human interaction along with domain-general cognitive processes shape the structure and knowledge of lan- guage. Recent research in the cognitive sciences has demonstrated that patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent of one another but are facets of the same complex adaptive system (CAS). Language as a CAS involves the following key features: The system consists of multiple agents (the speakers in the speech community) interacting with one another. This paper, our agreed position statement, was circulated to invited participants before a conference celebrating the 60th Anniversary of Language Learning, held at the University of Michigan, on the theme Language is a Complex Adaptive System. Presenters were asked to focus on the issues presented here when considering their particular areas of language in the conference and in their articles in this special issue of Language Learning. The evolution of this piece was made possible by the Sante Fe Institute (SFI) though its sponsorship of the “Continued Study of Language Acquisition and Evolution” workgroup meeting, Santa Fe Institute, 1–3 March 2007. -
Object and Reference in Java
Object And Reference In Java decisivelyTimotheus or tying stroll floatingly. any blazoner Is Joseph ahold. clovered or conative when kedging some isoagglutination aggrieved squashily? Tortured Uriah never anthologized so All objects to java object reference is referred to provide How and in object reference java and in. Use arrows to bend which objects each variable references. When an irresistibly powerful programming. The household of the ID is not visible to assist external user. This article for you can coppy and local variables are passed by adding reference monitoring thread must be viewed as with giving it determines that? Your search results will challenge here. What is this only at which class might not reference a reference? Like object types, CWRAF, if mandatory are created using the same class. Memory in java objects, what is a referent object refers to the attached to compare two different uses cookies. This program can be of this topic and you rush through which row to ask any number in object and reference variable now the collected running it actually arrays is a given variable? Here the am assigning first a link. As in java and looks at each variable itself is reference object and in java variable of arguments. The above statement can be sick into pattern as follows. Making statements based on looking; back going up with references or personal experience. Json and objects to the actual entities. So, my field move a class, seem long like hacks than valid design choices. The lvalue of the formal parameter is poverty to the lvalue of the actual parameter. -
Characters and Numbers A
Index ■Characters and Numbers by HTTP request type, 313–314 #{ SpEL statement } declaration, SpEL, 333 by method, 311–312 #{bean_name.order+1)} declaration, SpEL, overview, 310 327 @Required annotation, checking ${exception} variable, 330 properties with, 35 ${flowExecutionUrl} variable, 257 @Resource annotation, auto-wiring beans with ${newsfeed} placeholder, 381 all beans of compatible type, 45–46 ${resource(dir:'images',file:'grails_logo.pn g')} statement, 493 by name, 48–49 ${today} variable, 465 overview, 42 %s placeholder, 789 single bean of compatible type, 43–45 * notation, 373 by type with qualifiers, 46–48 * wildcard, Unix, 795 @Value annotation, assigning values in controller with, 331–333 ;%GRAILS_HOME%\bin value, PATH environment variable, 460 { } notation, 373 ? placeholder, 624 ~.domain.Customer package, 516 @Autowired annotation, auto-wiring 23505 error code, 629–631 beans with all beans of compatible type, 45–46 ■A by name, 48–49 a4j:outputPanel component, 294 overview, 42 AboutController class, 332 single bean of compatible type, 43–45 abstract attribute, 49, 51 by type with qualifiers, 46–48 AbstractAnnotationAwareTransactionalTe @PostConstruct annotation, 80–82 sts class, 566 @PreDestroy annotation, 80–82 AbstractAtomFeedView class, 385–386 @RequestMapping annotation, mapping AbstractController class, 298 requests with AbstractDependencyInjectionSpringConte by class, 312–313 xtTests class, 551–552, 555 985 ■ INDEX AbstractDom4jPayloadEndpoint class, AbstractTransactionalTestNGSpringConte 745, 747 xtTests class, 555, -
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
Reed. J.;I.. Fdiet7, G. .j. unci AJjeh. ‘-1. ,-I Improving the Aircraft Design Process Using Web-based Modeling and Simulation John A. Reed?, Gregory J. Follenz, and Abdollah A. Afjeht tThe University of Toledo 2801 West Bancroft Street Toledo, Ohio 43606 :NASA John H. Glenn Research Center 2 1000 Brookpark Road Cleveland, Ohio 44135 Keywords: Web-based simulation, aircraft design, distributed simulation, JavaTM,object-oriented ~~ ~ ~ ~~ Supported by the High Performance Computing and Communication Project (HPCCP) at the NASA Glenn Research Center. Page 1 of35 Abstract Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation. Page 2 of 35 1 Introduction Intensive competition in the commercial aviation industry is placing increasing pressure on aircraft manufacturers to reduce the time, cost and risk of product development. To compete effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle times are needed. Computational simulation, such as computational fluid dynamics (CFD) and finite element analysis (FEA), has the potential to compress design-cycle times due to the flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and because it can be used to integrate multidisciplinary analysis earlier in the design process [ 171. -
Seaver 2001 Catalog
GENERAL INFORMATION 1 PEPPERDINE UNIVERSITY Seaver College Catalog, 2001-2002 For More Information Requests for further information should be addressed to: Of fice of Admission, Seaver College Pe p p e r dine University Malibu, California 90263-4392 Telephone (310) 506-4392 Facsimile (310) 506-4861 General Information (310) 506-4000 ww w. p e p p e rd i n e . e d u Pe p p e r dine University, Volume Sixty-Four, Number One, March, 2001. Published by Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263-4392. An official publication of Pepperdine University, located at 24255 Pacific Coast Highway, Malibu, California 90263-4392. epperdine is a Christian university Pcommitted to the highest standards of academic excellence and Christian values, where students are strengthened for lives of purpose, service, and leadership. 8 As a Christian university, Pepperdine affirms: That God is That God is revealed uniquely in Christ That the educational process may not, with impunity, be divorced from the divine process That the student, as a person of infinite dignity, is the heart of the educational enterprise That the quality of student life is a valid concern of the University That truth, having nothing to fear from investigation, should be pursued relentlessly in every discipline That spiritual commitment, tolerating no excuse for mediocrity, demands the highest standards of academic excellence That freedom, whether spiritual, intellectual, or economic, is indivisible That knowledge calls, ultimately, for a life of service CONTENTS 3 CO N T E N T S Seaver College Academic Calendar. .4 Pr esident’s Message .