Glycolysis and Glyceroneogenesis In

Total Page:16

File Type:pdf, Size:1020Kb

Glycolysis and Glyceroneogenesis In GLYCOLYSIS AND GLYCERONEOGENESIS IN ADIPOCYTES: EFFECTS OF ROSIGLITAZONE, AN ANTI-DIABETIC DRUG By SOREIYU UMEZU Bachelor of Science in Biochemistry and Molecular Biology Oklahoma State University Stillwater, OK 2005 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2010 GLYCOLYSIS AND GLYCERONEOGENESIS IN ADIPOCYTES: EFFECTS OF ROSIGLITAZONE, AN ANTI-DIABETIC DRUG Dissertation Approved: Dr. Jose L Soulages Dissertation Adviser Dr. Chang-An Yu Dr. Andrew Mort Dr. Jack Dillwith Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS First, I would like to immensely thank my advisor, Dr. Jose Soulages, for his support and guidance throughout my graduate studies. Without Dr. Soulages extensive expertise and knowledge along with his sense of humor I would not have achieved my goal of obtaining my Doctorate in Biochemistry. I would also like to thank Dr. Estela Arrese for her kind and generous advice. Both Dr. Soulages and Dr. Arrese have made a tremendous impact on me personally and professionally. I would like to thank all the members of my committee: Dr. Chang-An Yu, Dr. Andrew Mort, and Dr. Jack Dillwith who have devoted their time reading my dissertation and their patience for my procrastination. Their support and guidance has been invaluable and extremely appreciative. Most importantly, I want to acknowledge my parents: (Dr.) Mrs. Fumie Umezu and (Dr.) Mr. Yasuiki Umezu, for their unwavering support of me throughout my time in the U.S. and for suffering me while I’m doing whatever I want in my life. Lastly, I want to thank to my good friends, Alisha Howard, Philip Verghese, Laticia Rivera, Noah Burns, and Masakazu Hamada. They have provided supports and smile to overcome obstacles in my graduate life. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION ......................................................................................................1 Diabetes Mellitus .....................................................................................................1 Type II Diabetes .......................................................................................................2 Adipose Tissue and Adipocytes ...............................................................................3 Fatty Acid Toxicity ..................................................................................................4 The Origin of NEFA ................................................................................................5 Metababolic Effects of Rosiglitazone ......................................................................6 Glyceroneogenesis ...................................................................................................7 Glycerol Kinase .......................................................................................................8 Research Objectives and Significance ...................................................................10 II. ESTIMATION OF METABOLISM OF GLUCOSE AND TRIACYLGLYCEROL IN ADIPOCYTES ........12 Introduction ............................................................................................................12 Experimental Procedures .......................................................................................12 Results ....................................................................................................................15 Utilization of glucose carbons for lipid synthesis ......................................15 Actual rates of glucose conversion into the lipids of adipocytes ......................................17 Summary ................................................................................................................19 iv Chapter Page III. CHANGES IN THE METABOLISM OF GLUCOSE AND TG IN ADIPOCTE TREATED WITH ROSIGLITAZONE ......................20 Introduction ............................................................................................................20 Experimental Procedure .........................................................................................21 Results ....................................................................................................................22 Effect of RGZ treatment in fatty acid metabolism................................22 Effect of RGZ treatment in glucose metabolism ..................................26 Effect of RGZ on the activities and expressions of some enzymes involved in TG and glucose metabolism ................21 Summary ................................................................................................................30 IV. CONTRIBUTION OF GLYCOLYISIS AND GLYCERONEOGENESIS TO THE SYNTHESIS OF GLYCERIDE-GLYCEROL: EFFECT OF RGZ ....33 Introduction ............................................................................................................33 Experimental Procedure .........................................................................................34 Results ....................................................................................................................38 Utilization of glucose for the synthesis of glyceride-glycerol and fatty acids: effect of RGZ. ...........38 Utilization of pyruvate for the synthesis of glyceride-glycerol and fatty acids: effect of RGZ ............40 Effect of pyruvate on the metabolism of adipocytes ............................42 Summary ................................................................................................................44 V. DISCUSSION ........................................................................................................45 Summary of the Study ...........................................................................................45 Rosiglitazone and Metabolism of Adipocytes .......................................................46 Lipolysis and FA Oxidation .............................................................................47 Glycolysis and G-G Synthesis .........................................................................49 FA Synthesis and Re-esterification ..................................................................49 Glyceroneogenesis and Glycerol Kinase .........................................................50 REFERENCES ............................................................................................................52 v LIST OF TABLES Table Page Table I: Effects of insulin and isoproterenol on the metabolism of 3T3L-1 adipocytes .......................16 Table II: Glycerol and NEFA release in response to RGZ ..........................................24 Table III: RGZ-induced changes in glycolysis ............................................................26 vi LIST OF FIGURES Figure Page 1. Metabolic routes involved in the synthesis of glyceride-glycerol in adipocytes .................................9 2. Incorporation of glucose carbons into the lipids of adipocytes .............................17 3. Rates of glucose utilization for lipid synthesis. .....................................................18 4. Effects of RGZ concentration and incubation time on NEFA release from adipocytes. ..............................23 5. Average NEFA reduction and increase in lipolysis in RGZ-treated adipocytes ...............................24 6. Effects of RGZ on intracellular FA, tissue TG, and NEFA absorption in adipocytes ...............................25 7. Intracellular glycogen content in 3T3L-1 adipocytesis is altered by RGZ ............27 8. Effect of RGZ on the expression of glycolytic enzymes .......................................28 9. Rosiglitazone up-regulates GK expression but not activity ...................................29 10. Effect of RGZ on the expression of lipases ...........................................................30 11. The overview of the RGZ-activated pathway for the synthesis of G-G from glucose in 3T3L-1 adipocytes. ........32 12. Utilization of glucose for glyceride-glycerol and fatty acids.................................39 13. Rate of glyceroneogenesis .....................................................................................40 14. Contribution of glyceroneongenesis for the synthesis of G-G in adipocytes ........41 15. Relative NEFA production is increased in response to pyruvate...........................43 vii CHAPTER I INTRODUCTION Diabetes Mellitus Diabetes mellitus is the metabolic disorder affecting metabolism of carbohydrates, lipids, proteins in every type of cells in the body. This metabolic disorder is characterized by insensitivity to insulin, insufficient/absent insulin secretion, or both. Currently, around 23.6 million people (7.8% of the population) are affected by this metabolic syndrome in the United States [1]. Moreover, more than 246 millions are estimated to have diabetes worldwide, and this number is expected to increase in the next few decades [2-4]. In the U.S alone, the cost of diabetes, including medical care and social costs, reached around $174 billion in the year of 2007 [5]. This cost is also expected to increase drastically in next few years, therefore diabetes mellitus is now considered as epidemic. There are several forms of diabetes. Among these cases of diabetes, type I and type II are the ones that affect most of the patients (95 to 99%). Type I diabetes (T1D) is caused by pancreas deficiency in insulin production [6, 7] whereas type II diabetes (T2D) is characterized
Recommended publications
  • Effects of Glucagon, Glycerol, and Glucagon Plus Glycerol On
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows Nimer Mehyar Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Mehyar, Nimer, "Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows" (2011). Graduate Theses and Dissertations. 11923. https://lib.dr.iastate.edu/etd/11923 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows by Nimer Mehyar A thesis submitted to graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Biochemistry Program of Study Committee: Donald C. Beitz, Major Professor Ted W. Huiatt Kenneth J. Koehler Iowa State University Ames, Iowa 2011 Copyright Nimer Mehyar, 2011. All rights reserved ii To My Mother To Ghada Ali, Sarah, and Hassan
    [Show full text]
  • • Glycolysis • Gluconeogenesis • Glycogen Synthesis
    Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes!
    [Show full text]
  • THE AEROBIC (Air-Robic!) PATHWAYS
    THE AEROBIC (air-robic!) PATHWAYS Watch this video on aerobic glycolysis: http://ow.ly/G5djv Watch this video on oxygen use: http://ow.ly/G5dmh Energy System 1 – The Aerobic Use of Glucose (Glycolysis) This energy system involves the breakdown of glucose (carbohydrate) to release energy in the presence of oxygen. The key to this energy system is that it uses OXYGEN to supply energy. Just like the anaerobic systems, there are many negatives and positives from using this pathway. Diagram 33 below summarises the key features of this energy system. When reading the details on the table keep in mind the differences between this and the previous systems that were looked at. In this way a perspective of their features can be appreciated and applied. Diagram 33: The Key Features of the Aerobic Glycolytic System Highlight 3 key features in the diagram that are important to the functioning of this system. 1: ------------------------------------------------------------------------------------------------------------------------------------------------------- 2: ------------------------------------------------------------------------------------------------------------------------------------------------------- 3: ------------------------------------------------------------------------------------------------------------------------------------------------------- Notes ---------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • The Effect of 2-Desoxy-D-Glucose on Glycolysis and Respiration of Tumor and Normal Tissues
    The Effect of 2-Desoxy-D-glucose on Glycolysis and Respiration of Tumor and Normal Tissues GLADYSE. WOODWARDANDMARIET. HUDSON (Biochemical Research Foundation, Newark, Delaware) Inhibition of metabolism by structural analogs end of each experiment. Reaction rates are expressed of metabolites is one of the newer concepts of of dry tissue/hour, and are based on the initial steady rate. chemotherapy. It seems possible that this concept The symbols, QCOJ.Qco2>an<l Q<v are used to express, re spectively, the rates of anaerobic glycolysis, aerobic glycolysis, might be applied to cancer by use of structural and respiration. The Q values as given in the tables are from analogs of glucose to inhibit the glycolysis of the single or duplicate determinations. tumor cell, since tumor tissue in contrast to most normal tissues possesses the ability to glycolyze RESULTS glucose at a high rate both anaerobically and EFFECTop 2DG ONGLYCOLYSIS aerobically (7). It was found that 2DG in the maximum concen 2-Desoxy-D-glucose (2DG) is a structural ana tration used with each tissue did not significantly log of glucose, differing from glucose only at the affect the endogenous glycolysis of any of the tis second carbon atom by the absence of one oxygen sues studied. Calculation of the degree of inhibi atom. This analog has been shown (2) to compete tion of glucose or fructose utilization, therefore, is with glucose in the yeast fermentation system and, based on the Q values from which the correspond thereby, to inhibit fermentation of glucose. In a ing blank Q value has been subtracted.
    [Show full text]
  • Adipocyte Glucocorticoid Receptor Is Important in Lipolysis and Insulin Resistance Due to Exogenous Steroids, but Not Insulin Resistance Caused by High Fat Feeding
    Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Shen, Yachen, Hyun Cheol Roh, Manju Kumari, and Evan D. Rosen. 2017. “Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding.” Molecular Metabolism 6 (10): 1150-1160. doi:10.1016/j.molmet.2017.06.013. http:// dx.doi.org/10.1016/j.molmet.2017.06.013. Published Version doi:10.1016/j.molmet.2017.06.013 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34492181 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Original Article Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding Yachen Shen 1,4,5, Hyun Cheol Roh 1,5, Manju Kumari 1, Evan D. Rosen 1,2,3,* ABSTRACT Objective: The critical role of adipose tissue in energy and nutrient homeostasis is influenced by many external factors, including overnutrition, inflammation, and exogenous hormones. Prior studies have suggested that glucocorticoids (GCs) in particular are major drivers of physiological and pathophysiological changes in adipocytes. In order to determine whether these effects directly require the glucocorticoid receptor (GR) within adipocytes, we generated adipocyte-specific GR knockout (AGRKO) mice.
    [Show full text]
  • Genomic and Non-Genomic Actions of Glucocorticoids on Adipose Tissue Lipid Metabolism
    International Journal of Molecular Sciences Review Genomic and Non-Genomic Actions of Glucocorticoids on Adipose Tissue Lipid Metabolism Negar Mir 1, Shannon A. Chin 1 , Michael C. Riddell 2 and Jacqueline L. Beaudry 1,* 1 Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; [email protected] (N.M.); [email protected] (S.A.C.) 2 Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; [email protected] * Correspondence: [email protected] Abstract: Glucocorticoids (GCs) are hormones that aid the body under stress by regulating glucose and free fatty acids. GCs maintain energy homeostasis in multiple tissues, including those in the liver and skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). WAT stores energy as triglycerides, while BAT uses fatty acids for heat generation. The multiple genomic and non-genomic pathways in GC signaling vary with exposure duration, location (adipose tissue depot), and species. Genomic effects occur directly through the cytosolic GC receptor (GR), regulating the expression of proteins related to lipid metabolism, such as ATGL and HSL. Non-genomic effects act through mechanisms often independent of the cytosolic GR and happen shortly after GC exposure. Studying the effects of GCs on adipose tissue breakdown and generation (lipolysis and adipogenesis) leads to insights for treatment of adipose-related diseases, such as obesity, coronary disease, and cancer, but has led to controversy among researchers, largely due to the complexity of the process. This paper reviews the recent literature on the genomic and non-genomic effects of GCs on WAT and Citation: Mir, N.; Chin, S.A.; Riddell, BAT lipolysis and proposes research to address the many gaps in knowledge related to GC activity M.C.; Beaudry, J.L.
    [Show full text]
  • Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I
    Handout 5 Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I. Overall concepts A. Definitions 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) De novo fatty acid synthesis uses glucose absorbed from the diet rather than glucose synthesized by the liver. 2) De novo fatty acid synthesis uses lactate derived primarily from glucose metabolism in muscle and red blood cells. b. Amino acid precursors (e.g., alanine, branched-chain amino acids) 1) De novo fatty acid synthesis from amino acids is especially important during times of excess protein intake. 2) Use of amino acids for fatty acid synthesis may result in nitrogen overload (e.g., the Atkins diet). c. Short-chain organic acids (e.g., acetate, butyrate, and propionate) 1) The rumen of ruminants is a major site of short-chain fatty acid synthesis. 2) Only small amounts of acetate circulate in non-ruminants. 2. Lipogenesis = fatty acid or triacylglycerol synthesis a. From preformed fatty acids (from diet or de novo fatty acid synthesis) b. Requires source of carbon (from glucose or lactate) for glycerol backbone 3T3-L1 Preadipocytes at confluence. No lipid 3T3-L1 Adipocytes after 6 days of filling has yet occurred. differentiation. Dark spots are lipid droplets. 1 Handout 5 Fatty Acid Synthesis B. Tissue sites of de novo fatty acid biosynthesis 1. Liver. In birds, fish, humans, and rodents (approx. 50% of fatty acid biosynthesis). 2. Adipose tissue. All livestock species synthesize fatty acids in adipose tissue; rodents synthesize about 50% of their fatty acids in adipose tissue.
    [Show full text]
  • Unbalanced Lipolysis Results in Lipotoxicity and Mitochondrial Damage in Peroxisome-Deficient Pex19 Mutants
    M BoC | ARTICLE Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome-deficient Pex19 mutants Margret H. Bülowa,*, Christian Wingena, Deniz Senyilmazb, Dominic Gosejacoba, Mariangela Socialea, Reinhard Bauera, Heike Schulzec, Konrad Sandhoffc, Aurelio A. Telemanb, Michael Hocha,*, and Julia Sellina,* aDepartment of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany; bDivision of Signal Transduction in Cancer and Metabolism, German Cancer Research Center, 69120 Heidelberg, Germany; cDepartment of Membrane Biology & Lipid Biochemistry, Life & Medical Sciences Institute (LIMES), Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany ABSTRACT Inherited peroxisomal biogenesis disorders (PBDs) are characterized by the ab- Monitoring Editor sence of functional peroxisomes. They are caused by mutations of peroxisomal biogenesis Thomas D. Fox factors encoded by Pex genes, and result in childhood lethality. Owing to the many metabolic Cornell University functions fulfilled by peroxisomes, PBD pathology is complex and incompletely understood. Received: Aug 30, 2017 Besides accumulation of peroxisomal educts (like very-long-chain fatty acids [VLCFAs] or Revised: Dec 11, 2017 branched-chain fatty acids) and lack of products (like bile acids or plasmalogens), many per- Accepted: Dec 13, 2017 oxisomal defects lead to detrimental mitochondrial abnormalities for unknown reasons. We generated Pex19 Drosophila mutants, which recapitulate the hallmarks of PBDs, like absence of peroxisomes, reduced viability, neurodegeneration, mitochondrial abnormalities, and ac- cumulation of VLCFAs. We present a model of hepatocyte nuclear factor 4 (Hnf4)-induced lipotoxicity and accumulation of free fatty acids as the cause for mitochondrial damage in consequence of peroxisome loss in Pex19 mutants. Hyperactive Hnf4 signaling leads to up- regulation of lipase 3 and enzymes for mitochondrial β-oxidation.
    [Show full text]
  • Quantitative Determinants of Aerobic Glycolysis Identify Flux Through The
    RESEARCH ARTICLE elifesciences.org Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step Alexander A Shestov1†, Xiaojing Liu1†, Zheng Ser1, Ahmad A Cluntun2, Yin P Hung3, Lei Huang4, Dongsung Kim2, Anne Le5, Gary Yellen3, John G Albeck6‡, Jason W Locasale1,2,4* 1Division of Nutritional Sciences, Cornell University, Ithaca, United States; 2Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 3Department of Neurobiology, Harvard Medical School, Boston, United States; 4Field of Computational Biology, Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, United States; 5Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, United States; 6Department of Cell Biology, Harvard Medical School, Boston, United States Abstract Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational *For correspondence: locasale@ model of glycolysis and an integrated analysis using metabolic control analysis (MCA), cornell.edu metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating †These authors contributed lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose equally to this work (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, Present address: ‡Department negative flux control was found and confirmed for several steps thought to be rate-limiting in of Molecular Cell Biology, glycolysis.
    [Show full text]
  • Glycolysis and Gluconeogenesis
    CC7_Unit 2.3 Glycolysis and Gluconeogenesis Glucose occupies a central position in the metabolism of plants, animals and many microorganisms. In animals, glucose has four major fates as shown in figure 1. The organisms that do not have access to glucose from other sources must make it. Plants make glucose by photosynthesis. Non-photosynthetic cells make glucose from 3 and 4 carbon precursors by the process of gluconeogenesis. Glycolysis is the process of enzymatic break down of one molecule of glucose (6 carbon) into two pyruvate molecules (3 carbon) with the concomitant net production of two molecules of ATP. The complete glycolytic pathway was elucidated by 1940, largely through the pioneering cotributions of Gustav Embden, Otto Meyerhof, Carl Neuberg, Jcob Parnad, Otto Wrburg, Gerty Cori and Carl Cori. Glycolysis is also known as Embden-Meyerhof pathway. • Glycolysis is an almost universal central pathway of glucose catabolism. • Glycolysis is anaerobic process. During glycolysis some of the free energy is released and conserved in the form of ATP and NADH. • Anaerobic microorganisms are entirely dependent on glycolysis. • In most of the organisms, the pyruvate formed by glycolysis is further metabolised via one of the three catabolic routes. 1) Under aerobic conditions, glucose is oxidized all the way to C02 and H2O. 2) Under anaerobic conditions, the pyruvic acid can be fermented to lactic acid or to 3) ethanol plus CO2 as shown in figure 2. • Glycolytic breakdown of glucose is the sole source of metabolic energy in some mammalian tissues and cells (RBCs, Brain, Renal medulla and Sperm cell). Glycolysis occurs in TEN steps.
    [Show full text]
  • Glycolysis Citric Acid Cycle Oxidative Phosphorylation Calvin Cycle Light
    Stage 3: RuBP regeneration Glycolysis Ribulose 5- Light-Dependent Reaction (Cytosol) phosphate 3 ATP + C6H12O6 + 2 NAD + 2 ADP + 2 Pi 3 ADP + 3 Pi + + 1 GA3P 6 NADP + H Pi NADPH + ADP + Pi ATP 2 C3H4O3 + 2 NADH + 2 H + 2 ATP + 2 H2O 3 CO2 Stage 1: ATP investment ½ glucose + + Glucose 2 H2O 4H + O2 2H Ferredoxin ATP Glyceraldehyde 3- Ribulose 1,5- Light Light Fx iron-sulfur Sakai-Kawada, F Hexokinase phosphate bisphosphate - 4e + center 2016 ADP Calvin Cycle 2H Stroma Mn-Ca cluster + 6 NADP + Light-Independent Reaction Phylloquinone Glucose 6-phosphate + 6 H + 6 Pi Thylakoid Tyr (Stroma) z Fe-S Cyt f Stage 1: carbon membrane Phosphoglucose 6 NADPH P680 P680* PQH fixation 2 Plastocyanin P700 P700* D-(+)-Glucose isomerase Cyt b6 1,3- Pheophytin PQA PQB Fructose 6-phosphate Bisphosphoglycerate ATP Lumen Phosphofructokinase-1 3-Phosphoglycerate ADP Photosystem II P680 2H+ Photosystem I P700 Stage 2: 3-PGA Photosynthesis Fructose 1,6-bisphosphate reduction 2H+ 6 ADP 6 ATP 6 CO2 + 6 H2O C6H12O6 + 6 O2 H+ + 6 Pi Cytochrome b6f Aldolase Plastoquinol-plastocyanin ATP synthase NADH reductase Triose phosphate + + + CO2 + H NAD + CoA-SH isomerase α-Ketoglutarate + Stage 2: 6-carbonTwo 3- NAD+ NADH + H + CO2 Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate carbons Isocitrate α-Ketoglutarate dehydogenase dehydrogenase Glyceraldehyde + Pi + NAD Isocitrate complex 3-phosphate Succinyl CoA Oxidative Phosphorylation dehydrogenase NADH + H+ Electron Transport Chain GDP + Pi 1,3-Bisphosphoglycerate H+ Succinyl CoA GTP + CoA-SH Aconitase synthetase
    [Show full text]
  • Catecholamine-Induced Lipolysis in Obesity
    International Journal of Obesity (1999) 23, Suppl 1, 10±13 ß 1999 Stockton Press All rights reserved 0307±0565/99 $12.00 http://www.stockton-press.co.uk/ijo Catecholamine-induced lipolysis in obesity Peter Arner1* 1Department of Medicine, Karolinska Institute at Huddinge University Hospital, CME, S-141 86 Huddinge, Sweden Catecholamines are the only hormones with pronounced lipolytic action in man. A number of in vivo and in vitro studies suggest that there is lipolytic resistance to catecholamines in subcutaneous adipose tissue, which is the major fat depot in obese subjects. This is due to multiple alterations in catecholamine signal transduction, involving decreased expression and function of b2-adrenoceptors, increased function of a2-adrenoceptors and decreased ability of cyclic monophosphate (AMP) to stimulate hormone sensitive lipase. A sedentary life-style, which usually characterizes obesity, may contribute to the catecholamine resistance. However, hereditary=genetic factors may also be involved. Recently, decreased expression and function of hormone sensitive lipase has been found in subcutaneous adipocytes of non-obese subjects with heredity for obesity. In addition, polymorphisms in the genes for b2-adrenoceptors, b3-adrenoceptors and hormone sensitive lipase, associate with obesity. On the other hand, catecholamine-induced lipolysis in visceral adipose tissue is increased in obesity due to increased function of b3- adrenoceptors (major ®nding), decreased function of a2-adrenoceptors and increased ability of cyclic AMP to stimulate lipolysis. When the ®ndings in different adipose regions are considered together, it appears that there is a re- distribution of lipolysis and thereby fatty acid mobilization in obesity, favouring the visceral fat depot.
    [Show full text]