A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications computers Article A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications Chiman Kwan 1,* , Jude Larkin 1 , Bence Budavari 1, Bryan Chou 1, Eric Shang 2 and Trac D. Tran 3 1 Applied Research, LLC, Rockville, MD 20850, USA; [email protected] (J.L.); [email protected] (B.B.); [email protected] (B.C.) 2 Leidos, Columbia, MD 21046, USA; [email protected] 3 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-207-2311 Received: 14 February 2019; Accepted: 24 April 2019; Published: 28 April 2019 Abstract: Since lossless compression can only achieve two to four times data compression, it may not be efficient to deploy lossless compression in bandwidth constrained applications. Instead, it would be more economical to adopt perceptually lossless compression, which can attain ten times or more compression without loss of important information. Consequently, one can transmit more images over bandwidth limited channels. In this research, we first aimed to compare and select the best compression algorithm in the literature to achieve a compression ratio of 0.1 and 40 dBs or more in terms of a performance metric known as human visual system model (HVSm) for maritime and sonar images. Our second objective was to demonstrate error concealment algorithms that can handle corrupted pixels due to transmission errors in interference-prone communication channels. Using four state-of-the-art codecs, we demonstrated that perceptually lossless compression can be achieved for realistic maritime and sonar images. At the same time, we also selected the best codec for this purpose using four performance metrics. Finally, error concealment was demonstrated to be useful in recovering lost pixels due to transmission errors. Keywords: perceptually lossless compression; error recovery; maritime and sonar images; JPEG2000; X264; X265; Daala 1. Introduction Since the appearance of the Joint Photographic Experts Group (JPEG) standard in the 1990s, image compression has been well-developed [1–6]. Lossless image compression algorithms include JPEG [7] and JPEG2000 [8]. Some recent algorithms such as X264 (software implementation of H.264/AVC standard) [9] and X265 (software implementation of H.265/HEVC standard) [10] also provide lossless compression options. JPEG, X264, and X265 are discrete cosine transform (DCT) based algorithms and JPEG2000 is wavelet based. About 15 years ago, there were some developments in DCT based algorithms, where overlapped blocks known as lapped transforms (LT) were used to further improve the compression [11]. In the past few years, a group of researchers at Xiph have incorporated LT [11] into an open source codec known as Daala [12]. Through several years of rigorous development, Daala has reached a stage where it outperforms X264 and has comparable performance to X265 in terms of a performance metric that mimics human visual system (HVS) [12,13]. In this research, our sponsor had specified three requirements on the image codec for maritime and sonar images: (1) 10 to 1 compression ratio; (2) the decompressed image should have 40 dBs or Computers 2019, 8, 32; doi:10.3390/computers8020032 www.mdpi.com/journal/computers Computers 2019, 8, 32 2 of 21 more in HVSm, which may be considered as “near perceptually lossless” performance; and (3) the lost pixels need to be effectively concealed without incurring additional bandwidth. It should be noted that “perceptually lossless” has been defined in digital picture coding since mid-1990s [14]. One conventional way to handle transmission errors is to adopt error correction coding, which will add redundant bits and reduce the data transmission efficiency. We explored error concealment techniques, which do not incur additional bandwidth usage. It is important to emphasize that perceptual performance requires a suitable metric. Some conventional metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) may not match well with human’s subjective evaluations. Two metrics in the literature that have better correlation with human perception in the literature were also compared in our studies. In the literature, there are excellent papers discussing perceptually lossless coding [15–18]. The authors of [15] provided a survey of various ideas of embedding human perceptual model into the encoding process of various codecs such as JPEG2000, H264, and H265. The concepts of just noticeable difference (JND) and just not noticeable difference (JNND) [15–18] were introduced and embedded into some of the codecs. The output bit stream is compliant with the standards. Daala also incorporated perceptual vector quantization (PVQ) into its codec [12,13], which resulted in enhanced performance. We would like to emphasize that our paper is not about new developments in the perceptually lossless coding. In our studies, we used the codecs using the default settings and did not change any of the parameters. The only parameters we varied is the quality (or quantization) parameter (qp). The decompressed images were then evaluated using the four metrics, two of which are related to HVS. Similar to some existing papers (e.g., [15]), our sponsor specified 40 dBs or more in terms of HVSm, which may be considered as “near perceptually lossless”. It should be noted that this paper is an extension of our conference paper [19]. There are several key differences. First, we corrected an issue related to the compression ratio computation in our earlier study [19]. Since the input image formats for different codecs are different, we converted all the raw images to different image formats in our earlier study. For instance, X264 and X265 require the format to be Y4M and JPEG2000 and Daala use other formats. However, one issue is that the converted file sizes are slightly different for different formats. In our earlier study [19], each codec was using its own set for computing the compression ratios, causing some slight differences in terms of compression ratios. In this study, we consistently used the original image sizes as references instead of the converted ones. Second, when we generated the results presented in [19], X264 and X265 could only handle YUV420 format. In this study, we used the latest versions of X264 and X265, which can handle YUV444 format. Moreover, Daala has a newer version, which is improved over its previous version. Now, we re-generated all the performance metrics for all the datasets in this study. Third, we added two new sections to this paper containing new maritime and sonar images, and one new section containing images from the Xiph website. This is to demonstrate that the compression algorithms need to be robust to images with different resolutions and modalities. Fourth, we also present new error concealment results for the maritime and sonar images in this paper. Again, our goal was to demonstrate that the error concealment algorithms can handle different image modalities. Although the compression algorithms are well-known, there was still some customization work in this project. For example, the use of YUV444 format instead of the default YUV420 ensured high quality compression for X264 and X265 for still images. Moreover, the error concealment needed to be tailored to the data that we used. One key contribution of our project was to integrate three components (compression, error concealment, and near perceptually lossless evaluation after decompression) in the compression process into a single system to achieve 10 to 1 near perceptually lossless compression for maritime and sonar images. That is, the novelty of our paper is not in new perceptually lossless compression theory, but rather in the integration of existing compression and error concealment technologies to achieve near or even perceptually lossless image compression at 10 to 1 compression for bandwidth constrained and interference-prone applications. Computers 2019, 8, 32 3 of 21 Our paper is organized as follows. Section2 summarizes the technical approach, the various codecs, and the performance metrics. Section3 summarizes all the experiments using actual maritime and sonar images that are of interest to our customer. Visual comparisons of different codecs at 10 to 1 compression are also included. Finally, concluding remarks are given in Section4. Computers 2019, 2, x FOR PEER REVIEW 3 of 20 2. Technical Approach 2. Technical Approach 2.1. Proposed Image Compression and Error Recovery Approach 2.1. Proposed Image Compression and Error Recovery Approach In this study, we focused on objective evaluations using four well-known compression algorithms in theIn literature. this study, This we was focused to ensure on that objective we delivered evaluations the best using algorithm four to well-known our customer. compression Our overall technicalalgorithms approach in the literature. is summarized This was in Figure to ensure1. First, that we we briefly delivered reviewed the best the state-of-the-art algorithm to our compression customer. algorithmsOur overall available technical on approach the market. is summarized At the same in time, Figure we 1. described First, we dibrieflyfferent reviewed performance the state-of-the- metrics for algorithmart compression evaluation. algorithms The focus available was on on metrics the mark thatet. can At better the same model time, human we perception.described different We also reviewedperformance the metrics error
Recommended publications
  • An Effective Self-Adaptive Policy for Optimal Video Quality Over Heterogeneous Mobile Devices and Network Discovery Services
    Appl. Math. Inf. Sci. 13, No. 3, 489-505 (2019) 489 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/130322 An Effective Self-Adaptive Policy for Optimal Video Quality over Heterogeneous Mobile Devices and Network Discovery Services Saleh Ali Alomari∗1 , Mowafaq Salem Alzboon1, Belal Zaqaibeh1 and Mohammad Subhi Al-Batah1 1Faculty of Science and Information Technology, Jadara University, 21110 Irbid, Jordan Received: 12 Dec. 2018, Revised: 1 Feb. 2019, Accepted: 20 Feb. 2019 Published online: 1 May 2019 Abstract: The Video on Demand (VOD) system is considered a communicating multimedia system that can allow clients be interested whilst watching a video of their selection anywhere and anytime upon their convenient. The design of the VOD system is based on the process and location of its three basic contents, which are: the server, network configuration and clients. The clients are varied from numerous approaches, battery capacities, involving screen resolutions, capabilities and decoder features (frame rates, spatial dimensions and coding standards). The up-to-date systems deliver VOD services through to several devices by utilising the content of a single coded video without taking into account various features and platforms of a device, such as WMV9, 3GPP2 codec, H.264, FLV, MPEG-1 and XVID. This limitation only provides existing services to particular devices that are only able to play with a few certain videos. Multiple video codecs are stored by VOD systems store for a similar video into the storage server. The problems caused by the bandwidth overhead arise once the layers of a video are produced.
    [Show full text]
  • Download Media Player Codec Pack Version 4.1 Media Player Codec Pack
    download media player codec pack version 4.1 Media Player Codec Pack. Description: In Microsoft Windows 10 it is not possible to set all file associations using an installer. Microsoft chose to block changes of file associations with the introduction of their Zune players. Third party codecs are also blocked in some instances, preventing some files from playing in the Zune players. A simple workaround for this problem is to switch playback of video and music files to Windows Media Player manually. In start menu click on the "Settings". In the "Windows Settings" window click on "System". On the "System" pane click on "Default apps". On the "Choose default applications" pane click on "Films & TV" under "Video Player". On the "Choose an application" pop up menu click on "Windows Media Player" to set Windows Media Player as the default player for video files. Footnote: The same method can be used to apply file associations for music, by simply clicking on "Groove Music" under "Media Player" instead of changing Video Player in step 4. Media Player Codec Pack Plus. Codec's Explained: A codec is a piece of software on either a device or computer capable of encoding and/or decoding video and/or audio data from files, streams and broadcasts. The word Codec is a portmanteau of ' co mpressor- dec ompressor' Compression types that you will be able to play include: x264 | x265 | h.265 | HEVC | 10bit x265 | 10bit x264 | AVCHD | AVC DivX | XviD | MP4 | MPEG4 | MPEG2 and many more. File types you will be able to play include: .bdmv | .evo | .hevc | .mkv | .avi | .flv | .webm | .mp4 | .m4v | .m4a | .ts | .ogm .ac3 | .dts | .alac | .flac | .ape | .aac | .ogg | .ofr | .mpc | .3gp and many more.
    [Show full text]
  • Encoding H.264 Video for Streaming and Progressive Download
    What is Tuning? • Disable features that: • Improve subjective video quality but • Degrade objective scores • Example: adaptive quantization – changes bit allocation over frame depending upon complexity • Improves visual quality • Looks like “error” to metrics like PSNR/VMAF What is Tuning? • Switches in encoding string that enables tuning (and disables these features) ffmpeg –input.mp4 –c:v libx264 –tune psnr output.mp4 • With x264, this disables adaptive quantization and psychovisual optimizations Why So Important • Major point of contention: • “If you’re running a test with x264 or x265, and you wish to publish PSNR or SSIM scores, you MUST use –tune PSNR or –tune SSIM, or your results will be completely invalid.” • http://x265.org/compare-video-encoders/ • Absolutely critical when comparing codecs because some may or may not enable these adjustments • You don’t have to tune in your tests; but you should address the issue and explain why you either did or didn’t Does Impact Scores • 3 mbps football (high motion, lots of detail) • PSNR • No tuning – 32.00 dB • Tuning – 32.58 dB • .58 dB • VMAF • No tuning – 71.79 • Tuning – 75.01 • Difference – over 3 VMAF points • 6 is JND, so not a huge deal • But if inconsistent between test parameters, could incorrectly show one codec (or encoding configuration) as better than the other VQMT VMAF Graph Red – tuned Green – not tuned Multiple frames with 3-4-point differentials Downward spikes represent untuned frames that metric perceives as having lower quality Tuned Not tuned Observations • Tuning
    [Show full text]
  • Binary Image Compression Using Neighborhood Coding
    BINARY IMAGE COMPRESSION USING NEIGHBORHOOD CODING Tiago B. A. de Carvalho1, Tsang Ing Ren1, George D.C. Cavalcanti1, Tsang Ing Jyh2 1Center of Informatics, Federal University of Pernambuco, Brazil. 2Alcatel-Lucent, Bell Labs, Belgium E-mail: 1{tbac,tir,gdcc}@cin.ufpe.br, [email protected] ABSTRACT Bitmap image format requires a reasonable great amount of computer memory, since for each pixel it is necessary a Compression plays an important role in the storage and set of bits to represent it, and a relatively small image can transmission of digital image. Binary image compression is contain millions of pixels. Even a binary image that uses just of essential value for document imaging. Here, we propose a a bit per pixel can demand a large amount of disk space. novel compression technique based on the concept of There are dozens of bitmap image formats that use neighborhood coding, which codes each pixel of an image compression techniques, e.g., TIFF, GIF, PNG, JBIG and according to the number of neighbor pixels in different JPEG. The TIFF format can also use different types of directions. The proposed technique is a lossless compression compression methods such as CCITT Group 3 or Group 4. scheme, which also uses run-length encoding (RLE) and We propose a novel lossless binary image compression Huffman coding. We evaluated and compared this method to technique based on neighborhood coding scheme described several image file format, using test images taken from the in [2]. The codification starts by transforming each pixel of MPEG-7 core experiment CE-shape and the binary image the image into a vector.
    [Show full text]
  • Screen Capture Tools to Record Online Tutorials This Document Is Made to Explain How to Use Ffmpeg and Quicktime to Record Mini Tutorials on Your Own Computer
    Screen capture tools to record online tutorials This document is made to explain how to use ffmpeg and QuickTime to record mini tutorials on your own computer. FFmpeg is a cross-platform tool available for Windows, Linux and Mac. Installation and use process depends on your operating system. This info is taken from (Bellard 2016). Quicktime Player is natively installed on most of Mac computers. This tutorial focuses on Linux and Mac. Table of content 1. Introduction.......................................................................................................................................1 2. Linux.................................................................................................................................................1 2.1. FFmpeg......................................................................................................................................1 2.1.1. installation for Linux..........................................................................................................1 2.1.1.1. Add necessary components........................................................................................1 2.1.2. Screen recording with FFmpeg..........................................................................................2 2.1.2.1. List devices to know which one to record..................................................................2 2.1.2.2. Record screen and audio from your computer...........................................................3 2.2. Kazam........................................................................................................................................4
    [Show full text]
  • Opus, a Free, High-Quality Speech and Audio Codec
    Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay
    [Show full text]
  • Spin Digital HEVC/H.265 Software Encoder (Spin Enc) Enables Ultra-High-Quality Video with the Highest Compression Level
    Spin Digital HEVC/H.265 software encoder (Spin Enc) enables ultra-high-quality video with the highest compression level. Encoding, transmission, and storage of video in 4K, 8K, and beyond are now possible with commodity computing technologies. HEVC/H.265 encoder for production, contribution, and distribution of professional video for broadcast, VoD, and creative studios. Spin Digital HEVC/H.265 encoder is ready for the next generation of high-quality video systems, providing support for Ultra HD (UHD), High Dynamic Range (HDR), High Frame Rate (HFR), Wide Color Gamut (WCG), and Virtual Reality (360° video). Product Highlights HEVC/H.265 Encoder Package • Fast offline encoding software solution • Encoder: standalone HEVC/H.265 encoder • Ready for 8K and beyond • Transcoder: HEVC/H.265 decoder and encoder • Significantly better compression and quality integrated in FFmpeg than competing encoders • SDK: encoder plugin for FFmpeg (Libavcodec) • Enables WCG and HDR with up to 12-bit video • Compatible with ARIB STD-B32 standard • Versatile high-precision pre-processing filters • Preserves color resolution with 4:2:2, 4:4:4, and RGB formats • 22.2-ch AAC audio encoding and decoding SPIN DIGITAL HEVC/H.265 ENCODER Support for the HEVC standard: Main and Main 10 profiles Range Extensions (HEVCv2) profiles ARIB STD-B32 version 3.9 Resolutions: 4K, 8K, and beyond Color formats: 4:2:0, 4:2:2, 4:4:4, RGB Bit depths: 8-, 10-, 12-bit Color spaces: BT.601, BT.709, DCI-P3, BT.2020 HDR support: ST2084 transfer function, ST2086 HDR metadata, HLG Coding
    [Show full text]
  • The Daala Video Codec Project Next-Next Generation Video
    The Daala Video Codec Project Next-next Generation Video Timothy B. Terriberry Mozilla & The Xiph.Org Foundation ● Patents are no longer a problem for free software – We can all go home 2 Mozilla & The Xiph.Org Foundation ● Except... not quite 3 Mozilla & The Xiph.Org Foundation Carving out Exceptions in OIN (Table 0 contains one Xiph codec: FLAC) 4 Mozilla & The Xiph.Org Foundation Why This Matters ● Encumbered codecs are a billion dollar toll-tax on communications – Every cost from codecs is repeated a million fold in all multimedia software ● Codec licensing is anti-competitive – Licensing regimes are universally discriminatory – An excuse for proprietary software (Flash) ● Ignoring licensing creates risks that can show up at any time – A tax on success 5 Mozilla & The Xiph.Org Foundation The Royalty-Free Video Challenge ● Creating good codecs is hard – But we don’t need many – The best implementations of patented codecs are already free software ● Network effects decide – Where RF is established, non-free codecs see no adoption (JPEG, PNG, FLAC, …) ● RF is not enough – People care about different things – Must be better on all fronts 6 Mozilla & The Xiph.Org Foundation We Did This for Audio 7 Mozilla & The Xiph.Org Foundation The Daala Project ● Goal: Better than HEVC without infringing IPR ● Need a better strategy than “read a lot of patents” – People don’t believe you – Analysis is error-prone ● Try to stay far away from the line, but... ● One mistake can ruin years of development effort ● See: H.264 Baseline 8 Mozilla & The Xiph.Org
    [Show full text]
  • Home for Christmas S01E01 INTERNAL 720P WEB X264strife Eztv Thepiratebay
    1 / 2 Home For Christmas S01E01 INTERNAL 720p WEB X264-STRiFE [eztv] - ThePirateBay http://nextisp.com/index.php/Home/Drama/detail/p/a-little-love-never-hurts/uid/0.html - A ... [url=http://thebeststar.us/torrent/1663028501/UFC+210+Prelims+720p+WEB-DL+ ... in Fire S04E09 The Charay iNTERNAL 720p HDTV x264-DHD[ettv][/url] ... [url=http://almuzaffar.org/christmas-is-here-again-movie]Christmas Is Here .... Us.S01.COMPLETE.720p.WEB.x264-GalaxyTV2019-05-31 VIP 1.22 GiB 285 sotnikam · Video > HD MoviesThey.Shall.Not.Grow.Old.2018.1080p.BluRay.H264.. Download Chloe Neill - Chicagoland Vampires and Dark Elite torrent or any other torrent from the Other E-books. Direct download via magnet link.Missing: Home ‎Christmas ‎S01E01 ‎INTERNAL ‎WEB ‎x264- ‎[eztv] -. ... i ian dervish · file 3245112 trailer.park.boys.out.of.the.park.s02e01.720p.web.x264 strife ... file 3086561 unearthed.2016.s02e05.internal.720p.hevc.x265 megusta ... christmas cookie challenge s03e05 colors of christmas 480p x264 msd eztv ... 720p bluray yts yify · file 817715 miami.monkey.s01e01.480p.hdtv.x264 msd .... Nov 15, 2014 — Ninja x men 1 720p dual audio Любовь РїРѕРґ ... Home And Away S23E93 WS PDTV XviD-AUTV kapitein rob en het geheim van ... й”法提琴手 Нанолюбовь (10) web dl inside amy schumer ... Low Winter Sun S01E01 2013 HDTV x264 EZN ettv Mad Men (Season 06 Episode .... Home for Christmas S01E01 INTERNAL WEB x264-STRiFE EZTV torrent download - download for free Home for Christmas S01E01 INTERNAL WEB .... ... file 4554555 brave.new.world.s01e07.internal.1080p.hevc.x265 megusta eztv ..
    [Show full text]
  • PVQ Applied Outside of Daala (IETF 97 Draft)
    PVQ Applied outside of Daala (IETF 97 Draft) Yushin Cho Mozilla Corporation November, 2016 Introduction ● Perceptual Vector Quantization (PVQ) – Proposed as a quantization and coefficient coding tool for NETVC – Originally developed for the Daala video codec – Does a gain-shape coding of transform coefficients ● The most distinguishing idea of PVQ is the way it references a predictor. – PVQ does not subtract the predictor from the input to produce a residual Mozilla Corporation 2 Integrating PVQ into AV1 ● Introduction of a transformed predictors both in encoder and decoder – Because PVQ references the predictor in the transform domain, instead of using a pixel-domain residual as in traditional scalar quantization ● Activity masking, the major benefit of PVQ, is not enabled yet – Encoding RDO is solely based on PSNR Mozilla Corporation 3 Traditional Architecture Input X residue Subtraction Transform T signal R predictor P + decoded X Inverse Inverse Scalar decoded R Transform Quantizer Quantizer Coefficient bitstream of Coder coded T(X) Mozilla Corporation 4 AV1 with PVQ Input X Transform T T(X) PVQ Quantizer PVQ Coefficient predictor P Transform T T(X) Coder PVQ Inverse Quantizer Inverse dequantized bitstream of decoded X Transform T(X) coded T(X) Mozilla Corporation 5 Coding Gain Change Metric AV1 --> AV1 with PVQ PSNR Y -0.17 PSNR-HVS 0.27 SSIM 0.93 MS-SSIM 0.14 CIEDE2000 -0.28 ● For the IETF test sequence set, "objective-1-fast". ● IETF and AOM for high latency encoding options are used. Mozilla Corporation 6 Speed ● Increase in total encoding time due to PVQ's search for best codepoint – PVQ's time complexity is close to O(n*n) for n coefficients, while scalar quantization has O(n) ● Compared to Daala, the search space for a RDO decision in AV1 is far larger – For the 1st frame of grandma_qcif (176x144) in intra frame mode, Daala calls PVQ 3843 times, while AV1 calls 632,520 times, that is ~165x.
    [Show full text]
  • Efficient Multi-Codec Support for OTT Services: HEVC/H.265 And/Or AV1?
    Efficient Multi-Codec Support for OTT Services: HEVC/H.265 and/or AV1? Christian Timmerer†,‡, Martin Smole‡, and Christopher Mueller‡ ‡Bitmovin Inc., †Alpen-Adria-Universität San Francisco, CA, USA and Klagenfurt, Austria, EU ‡{firstname.lastname}@bitmovin.com, †{firstname.lastname}@itec.aau.at Abstract – The success of HTTP adaptive streaming is un- multiple versions (e.g., different resolutions and bitrates) and disputed and technical standards begin to converge to com- each version is divided into predefined pieces of a few sec- mon formats reducing market fragmentation. However, other onds (typically 2-10s). A client first receives a manifest de- obstacles appear in form of multiple video codecs to be sup- scribing the available content on a server, and then, the client ported in the future, which calls for an efficient multi-codec requests pieces based on its context (e.g., observed available support for over-the-top services. In this paper, we review the bandwidth, buffer status, decoding capabilities). Thus, it is state of the art of HTTP adaptive streaming formats with re- able to adapt the media presentation in a dynamic, adaptive spect to new services and video codecs from a deployment way. perspective. Our findings reveal that multi-codec support is The existing different formats use slightly different ter- inevitable for a successful deployment of today's and future minology. Adopting DASH terminology, the versions are re- services and applications. ferred to as representations and pieces are called segments, which we will use henceforth. The major differences between INTRODUCTION these formats are shown in Table 1. We note a strong differ- entiation in the manifest format and it is expected that both Today's over-the-top (OTT) services account for more than MPEG's media presentation description (MPD) and HLS's 70 percent of the internet traffic and this number is expected playlist (m3u8) will coexist at least for some time.
    [Show full text]
  • PDF Image JBIG2 Compression and Decompression with JBIG2 Encoding and Decoding SDK Library | 1
    PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 1 JBIG2 is an image compression standard for bi-level images developed by the Joint bi-level Image Expert Group. It is suitable for lossless compression and lossy compression. According to the group’s press release, in its lossless mode, JBIG2 usually generates files that are one- third to one-fifth the size of the fax group 4 and twice the size of JBIG, which was previously released by the group. The double-layer compression standard. JBIG2 was released as an international standard ITU in 2000. JBIG2 compression JBIG2 is an international standard for bi-level image compression. By segmenting the image into overlapping and/or non-overlapping areas of text, halftones and general content, compression techniques optimized for each content type are used: *Text area: The text area is composed of characters that are well suited for symbol-based encoding methods. Usually, each symbol will correspond to a character bitmap, and a sub-image represents a character or text. For each uppercase and lowercase character used on the front face, there is usually only one character bitmap (or sub-image) in the symbol dictionary. For example, the dictionary will have an “a” bitmap, an “A” bitmap, a “b” bitmap, and so on. VeryUtils.com PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 1 PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 2 *Halftone area: Halftone areas are similar to text areas because they consist of patterns arranged in a regular grid.
    [Show full text]