A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
An Effective Self-Adaptive Policy for Optimal Video Quality Over Heterogeneous Mobile Devices and Network Discovery Services
Appl. Math. Inf. Sci. 13, No. 3, 489-505 (2019) 489 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/130322 An Effective Self-Adaptive Policy for Optimal Video Quality over Heterogeneous Mobile Devices and Network Discovery Services Saleh Ali Alomari∗1 , Mowafaq Salem Alzboon1, Belal Zaqaibeh1 and Mohammad Subhi Al-Batah1 1Faculty of Science and Information Technology, Jadara University, 21110 Irbid, Jordan Received: 12 Dec. 2018, Revised: 1 Feb. 2019, Accepted: 20 Feb. 2019 Published online: 1 May 2019 Abstract: The Video on Demand (VOD) system is considered a communicating multimedia system that can allow clients be interested whilst watching a video of their selection anywhere and anytime upon their convenient. The design of the VOD system is based on the process and location of its three basic contents, which are: the server, network configuration and clients. The clients are varied from numerous approaches, battery capacities, involving screen resolutions, capabilities and decoder features (frame rates, spatial dimensions and coding standards). The up-to-date systems deliver VOD services through to several devices by utilising the content of a single coded video without taking into account various features and platforms of a device, such as WMV9, 3GPP2 codec, H.264, FLV, MPEG-1 and XVID. This limitation only provides existing services to particular devices that are only able to play with a few certain videos. Multiple video codecs are stored by VOD systems store for a similar video into the storage server. The problems caused by the bandwidth overhead arise once the layers of a video are produced. -
Download Media Player Codec Pack Version 4.1 Media Player Codec Pack
download media player codec pack version 4.1 Media Player Codec Pack. Description: In Microsoft Windows 10 it is not possible to set all file associations using an installer. Microsoft chose to block changes of file associations with the introduction of their Zune players. Third party codecs are also blocked in some instances, preventing some files from playing in the Zune players. A simple workaround for this problem is to switch playback of video and music files to Windows Media Player manually. In start menu click on the "Settings". In the "Windows Settings" window click on "System". On the "System" pane click on "Default apps". On the "Choose default applications" pane click on "Films & TV" under "Video Player". On the "Choose an application" pop up menu click on "Windows Media Player" to set Windows Media Player as the default player for video files. Footnote: The same method can be used to apply file associations for music, by simply clicking on "Groove Music" under "Media Player" instead of changing Video Player in step 4. Media Player Codec Pack Plus. Codec's Explained: A codec is a piece of software on either a device or computer capable of encoding and/or decoding video and/or audio data from files, streams and broadcasts. The word Codec is a portmanteau of ' co mpressor- dec ompressor' Compression types that you will be able to play include: x264 | x265 | h.265 | HEVC | 10bit x265 | 10bit x264 | AVCHD | AVC DivX | XviD | MP4 | MPEG4 | MPEG2 and many more. File types you will be able to play include: .bdmv | .evo | .hevc | .mkv | .avi | .flv | .webm | .mp4 | .m4v | .m4a | .ts | .ogm .ac3 | .dts | .alac | .flac | .ape | .aac | .ogg | .ofr | .mpc | .3gp and many more. -
Encoding H.264 Video for Streaming and Progressive Download
What is Tuning? • Disable features that: • Improve subjective video quality but • Degrade objective scores • Example: adaptive quantization – changes bit allocation over frame depending upon complexity • Improves visual quality • Looks like “error” to metrics like PSNR/VMAF What is Tuning? • Switches in encoding string that enables tuning (and disables these features) ffmpeg –input.mp4 –c:v libx264 –tune psnr output.mp4 • With x264, this disables adaptive quantization and psychovisual optimizations Why So Important • Major point of contention: • “If you’re running a test with x264 or x265, and you wish to publish PSNR or SSIM scores, you MUST use –tune PSNR or –tune SSIM, or your results will be completely invalid.” • http://x265.org/compare-video-encoders/ • Absolutely critical when comparing codecs because some may or may not enable these adjustments • You don’t have to tune in your tests; but you should address the issue and explain why you either did or didn’t Does Impact Scores • 3 mbps football (high motion, lots of detail) • PSNR • No tuning – 32.00 dB • Tuning – 32.58 dB • .58 dB • VMAF • No tuning – 71.79 • Tuning – 75.01 • Difference – over 3 VMAF points • 6 is JND, so not a huge deal • But if inconsistent between test parameters, could incorrectly show one codec (or encoding configuration) as better than the other VQMT VMAF Graph Red – tuned Green – not tuned Multiple frames with 3-4-point differentials Downward spikes represent untuned frames that metric perceives as having lower quality Tuned Not tuned Observations • Tuning -
Binary Image Compression Using Neighborhood Coding
BINARY IMAGE COMPRESSION USING NEIGHBORHOOD CODING Tiago B. A. de Carvalho1, Tsang Ing Ren1, George D.C. Cavalcanti1, Tsang Ing Jyh2 1Center of Informatics, Federal University of Pernambuco, Brazil. 2Alcatel-Lucent, Bell Labs, Belgium E-mail: 1{tbac,tir,gdcc}@cin.ufpe.br, [email protected] ABSTRACT Bitmap image format requires a reasonable great amount of computer memory, since for each pixel it is necessary a Compression plays an important role in the storage and set of bits to represent it, and a relatively small image can transmission of digital image. Binary image compression is contain millions of pixels. Even a binary image that uses just of essential value for document imaging. Here, we propose a a bit per pixel can demand a large amount of disk space. novel compression technique based on the concept of There are dozens of bitmap image formats that use neighborhood coding, which codes each pixel of an image compression techniques, e.g., TIFF, GIF, PNG, JBIG and according to the number of neighbor pixels in different JPEG. The TIFF format can also use different types of directions. The proposed technique is a lossless compression compression methods such as CCITT Group 3 or Group 4. scheme, which also uses run-length encoding (RLE) and We propose a novel lossless binary image compression Huffman coding. We evaluated and compared this method to technique based on neighborhood coding scheme described several image file format, using test images taken from the in [2]. The codification starts by transforming each pixel of MPEG-7 core experiment CE-shape and the binary image the image into a vector. -
Screen Capture Tools to Record Online Tutorials This Document Is Made to Explain How to Use Ffmpeg and Quicktime to Record Mini Tutorials on Your Own Computer
Screen capture tools to record online tutorials This document is made to explain how to use ffmpeg and QuickTime to record mini tutorials on your own computer. FFmpeg is a cross-platform tool available for Windows, Linux and Mac. Installation and use process depends on your operating system. This info is taken from (Bellard 2016). Quicktime Player is natively installed on most of Mac computers. This tutorial focuses on Linux and Mac. Table of content 1. Introduction.......................................................................................................................................1 2. Linux.................................................................................................................................................1 2.1. FFmpeg......................................................................................................................................1 2.1.1. installation for Linux..........................................................................................................1 2.1.1.1. Add necessary components........................................................................................1 2.1.2. Screen recording with FFmpeg..........................................................................................2 2.1.2.1. List devices to know which one to record..................................................................2 2.1.2.2. Record screen and audio from your computer...........................................................3 2.2. Kazam........................................................................................................................................4 -
Opus, a Free, High-Quality Speech and Audio Codec
Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay -
Spin Digital HEVC/H.265 Software Encoder (Spin Enc) Enables Ultra-High-Quality Video with the Highest Compression Level
Spin Digital HEVC/H.265 software encoder (Spin Enc) enables ultra-high-quality video with the highest compression level. Encoding, transmission, and storage of video in 4K, 8K, and beyond are now possible with commodity computing technologies. HEVC/H.265 encoder for production, contribution, and distribution of professional video for broadcast, VoD, and creative studios. Spin Digital HEVC/H.265 encoder is ready for the next generation of high-quality video systems, providing support for Ultra HD (UHD), High Dynamic Range (HDR), High Frame Rate (HFR), Wide Color Gamut (WCG), and Virtual Reality (360° video). Product Highlights HEVC/H.265 Encoder Package • Fast offline encoding software solution • Encoder: standalone HEVC/H.265 encoder • Ready for 8K and beyond • Transcoder: HEVC/H.265 decoder and encoder • Significantly better compression and quality integrated in FFmpeg than competing encoders • SDK: encoder plugin for FFmpeg (Libavcodec) • Enables WCG and HDR with up to 12-bit video • Compatible with ARIB STD-B32 standard • Versatile high-precision pre-processing filters • Preserves color resolution with 4:2:2, 4:4:4, and RGB formats • 22.2-ch AAC audio encoding and decoding SPIN DIGITAL HEVC/H.265 ENCODER Support for the HEVC standard: Main and Main 10 profiles Range Extensions (HEVCv2) profiles ARIB STD-B32 version 3.9 Resolutions: 4K, 8K, and beyond Color formats: 4:2:0, 4:2:2, 4:4:4, RGB Bit depths: 8-, 10-, 12-bit Color spaces: BT.601, BT.709, DCI-P3, BT.2020 HDR support: ST2084 transfer function, ST2086 HDR metadata, HLG Coding -
The Daala Video Codec Project Next-Next Generation Video
The Daala Video Codec Project Next-next Generation Video Timothy B. Terriberry Mozilla & The Xiph.Org Foundation ● Patents are no longer a problem for free software – We can all go home 2 Mozilla & The Xiph.Org Foundation ● Except... not quite 3 Mozilla & The Xiph.Org Foundation Carving out Exceptions in OIN (Table 0 contains one Xiph codec: FLAC) 4 Mozilla & The Xiph.Org Foundation Why This Matters ● Encumbered codecs are a billion dollar toll-tax on communications – Every cost from codecs is repeated a million fold in all multimedia software ● Codec licensing is anti-competitive – Licensing regimes are universally discriminatory – An excuse for proprietary software (Flash) ● Ignoring licensing creates risks that can show up at any time – A tax on success 5 Mozilla & The Xiph.Org Foundation The Royalty-Free Video Challenge ● Creating good codecs is hard – But we don’t need many – The best implementations of patented codecs are already free software ● Network effects decide – Where RF is established, non-free codecs see no adoption (JPEG, PNG, FLAC, …) ● RF is not enough – People care about different things – Must be better on all fronts 6 Mozilla & The Xiph.Org Foundation We Did This for Audio 7 Mozilla & The Xiph.Org Foundation The Daala Project ● Goal: Better than HEVC without infringing IPR ● Need a better strategy than “read a lot of patents” – People don’t believe you – Analysis is error-prone ● Try to stay far away from the line, but... ● One mistake can ruin years of development effort ● See: H.264 Baseline 8 Mozilla & The Xiph.Org -
Home for Christmas S01E01 INTERNAL 720P WEB X264strife Eztv Thepiratebay
1 / 2 Home For Christmas S01E01 INTERNAL 720p WEB X264-STRiFE [eztv] - ThePirateBay http://nextisp.com/index.php/Home/Drama/detail/p/a-little-love-never-hurts/uid/0.html - A ... [url=http://thebeststar.us/torrent/1663028501/UFC+210+Prelims+720p+WEB-DL+ ... in Fire S04E09 The Charay iNTERNAL 720p HDTV x264-DHD[ettv][/url] ... [url=http://almuzaffar.org/christmas-is-here-again-movie]Christmas Is Here .... Us.S01.COMPLETE.720p.WEB.x264-GalaxyTV2019-05-31 VIP 1.22 GiB 285 sotnikam · Video > HD MoviesThey.Shall.Not.Grow.Old.2018.1080p.BluRay.H264.. Download Chloe Neill - Chicagoland Vampires and Dark Elite torrent or any other torrent from the Other E-books. Direct download via magnet link.Missing: Home Christmas S01E01 INTERNAL WEB x264- [eztv] -. ... i ian dervish · file 3245112 trailer.park.boys.out.of.the.park.s02e01.720p.web.x264 strife ... file 3086561 unearthed.2016.s02e05.internal.720p.hevc.x265 megusta ... christmas cookie challenge s03e05 colors of christmas 480p x264 msd eztv ... 720p bluray yts yify · file 817715 miami.monkey.s01e01.480p.hdtv.x264 msd .... Nov 15, 2014 — Ninja x men 1 720p dual audio Любовь РїРѕРґ ... Home And Away S23E93 WS PDTV XviD-AUTV kapitein rob en het geheim van ... й”法提琴手 Нанолюбовь (10) web dl inside amy schumer ... Low Winter Sun S01E01 2013 HDTV x264 EZN ettv Mad Men (Season 06 Episode .... Home for Christmas S01E01 INTERNAL WEB x264-STRiFE EZTV torrent download - download for free Home for Christmas S01E01 INTERNAL WEB .... ... file 4554555 brave.new.world.s01e07.internal.1080p.hevc.x265 megusta eztv .. -
PVQ Applied Outside of Daala (IETF 97 Draft)
PVQ Applied outside of Daala (IETF 97 Draft) Yushin Cho Mozilla Corporation November, 2016 Introduction ● Perceptual Vector Quantization (PVQ) – Proposed as a quantization and coefficient coding tool for NETVC – Originally developed for the Daala video codec – Does a gain-shape coding of transform coefficients ● The most distinguishing idea of PVQ is the way it references a predictor. – PVQ does not subtract the predictor from the input to produce a residual Mozilla Corporation 2 Integrating PVQ into AV1 ● Introduction of a transformed predictors both in encoder and decoder – Because PVQ references the predictor in the transform domain, instead of using a pixel-domain residual as in traditional scalar quantization ● Activity masking, the major benefit of PVQ, is not enabled yet – Encoding RDO is solely based on PSNR Mozilla Corporation 3 Traditional Architecture Input X residue Subtraction Transform T signal R predictor P + decoded X Inverse Inverse Scalar decoded R Transform Quantizer Quantizer Coefficient bitstream of Coder coded T(X) Mozilla Corporation 4 AV1 with PVQ Input X Transform T T(X) PVQ Quantizer PVQ Coefficient predictor P Transform T T(X) Coder PVQ Inverse Quantizer Inverse dequantized bitstream of decoded X Transform T(X) coded T(X) Mozilla Corporation 5 Coding Gain Change Metric AV1 --> AV1 with PVQ PSNR Y -0.17 PSNR-HVS 0.27 SSIM 0.93 MS-SSIM 0.14 CIEDE2000 -0.28 ● For the IETF test sequence set, "objective-1-fast". ● IETF and AOM for high latency encoding options are used. Mozilla Corporation 6 Speed ● Increase in total encoding time due to PVQ's search for best codepoint – PVQ's time complexity is close to O(n*n) for n coefficients, while scalar quantization has O(n) ● Compared to Daala, the search space for a RDO decision in AV1 is far larger – For the 1st frame of grandma_qcif (176x144) in intra frame mode, Daala calls PVQ 3843 times, while AV1 calls 632,520 times, that is ~165x. -
Efficient Multi-Codec Support for OTT Services: HEVC/H.265 And/Or AV1?
Efficient Multi-Codec Support for OTT Services: HEVC/H.265 and/or AV1? Christian Timmerer†,‡, Martin Smole‡, and Christopher Mueller‡ ‡Bitmovin Inc., †Alpen-Adria-Universität San Francisco, CA, USA and Klagenfurt, Austria, EU ‡{firstname.lastname}@bitmovin.com, †{firstname.lastname}@itec.aau.at Abstract – The success of HTTP adaptive streaming is un- multiple versions (e.g., different resolutions and bitrates) and disputed and technical standards begin to converge to com- each version is divided into predefined pieces of a few sec- mon formats reducing market fragmentation. However, other onds (typically 2-10s). A client first receives a manifest de- obstacles appear in form of multiple video codecs to be sup- scribing the available content on a server, and then, the client ported in the future, which calls for an efficient multi-codec requests pieces based on its context (e.g., observed available support for over-the-top services. In this paper, we review the bandwidth, buffer status, decoding capabilities). Thus, it is state of the art of HTTP adaptive streaming formats with re- able to adapt the media presentation in a dynamic, adaptive spect to new services and video codecs from a deployment way. perspective. Our findings reveal that multi-codec support is The existing different formats use slightly different ter- inevitable for a successful deployment of today's and future minology. Adopting DASH terminology, the versions are re- services and applications. ferred to as representations and pieces are called segments, which we will use henceforth. The major differences between INTRODUCTION these formats are shown in Table 1. We note a strong differ- entiation in the manifest format and it is expected that both Today's over-the-top (OTT) services account for more than MPEG's media presentation description (MPD) and HLS's 70 percent of the internet traffic and this number is expected playlist (m3u8) will coexist at least for some time. -
PDF Image JBIG2 Compression and Decompression with JBIG2 Encoding and Decoding SDK Library | 1
PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 1 JBIG2 is an image compression standard for bi-level images developed by the Joint bi-level Image Expert Group. It is suitable for lossless compression and lossy compression. According to the group’s press release, in its lossless mode, JBIG2 usually generates files that are one- third to one-fifth the size of the fax group 4 and twice the size of JBIG, which was previously released by the group. The double-layer compression standard. JBIG2 was released as an international standard ITU in 2000. JBIG2 compression JBIG2 is an international standard for bi-level image compression. By segmenting the image into overlapping and/or non-overlapping areas of text, halftones and general content, compression techniques optimized for each content type are used: *Text area: The text area is composed of characters that are well suited for symbol-based encoding methods. Usually, each symbol will correspond to a character bitmap, and a sub-image represents a character or text. For each uppercase and lowercase character used on the front face, there is usually only one character bitmap (or sub-image) in the symbol dictionary. For example, the dictionary will have an “a” bitmap, an “A” bitmap, a “b” bitmap, and so on. VeryUtils.com PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 1 PDF image JBIG2 compression and decompression with JBIG2 encoding and decoding SDK library | 2 *Halftone area: Halftone areas are similar to text areas because they consist of patterns arranged in a regular grid.