The Evolution of Insect Flight: , Department of Zoology, ;
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Archiv Für Naturgeschichte
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1905 Band/Volume: 71-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Arachnida für 1904. 925-993 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Arachnida fiir 1904. Bearbeitet von Dr. Robert Lucas. A. Publikationen (Autoren alphabetisch). d'Agostino, A. P. Prima nota dei Ragni deU'Avelliiiese. Avellino 1/8 4 pp. Banks, Nathan (1). Some spiders and mites from Bermuda Islands. Trans. Connect. Acad. vol. XI, 1903 p. 267—275. — {%), The Arachnida of Florida. Proc. Acad. Philad. Jan. 1904 p. 120—147, 2 pls. (VII u. VIII). — (3). Some Arachnida from CaUfornia. Proc. Californ. Acad. III No. 13. p. 331—374, pls. 38—41. — (4). Arachnida (in) Alaska; from the Harriman Alaska Ex- pedition vol. VIII p. 37—45, 11 pls. — Abdruck der Publikation von 1900 aus d. Proc. Washington Acad. vol. II p. 477—486. Berthoumieu, L' Abbe. Revision de l'entomologie dans 1' Antiquite. Arachnides p. 197—200 (Chelifer, Scorpiones, Galeodes, Aranea, Ixodes, Tyroglyphus et Cheyletus). Eev. Sei. Bourbonnais 1904, p. 167. Bolton, H. The Palaeontology of the Lancashire Goal Measures. Manchester. Mus. Owens Coli. Publ. 50. Mus. Handb. p. 378—415. — Abdruck aus Trans. Manchester geol. min. Soc. vol. 28. Brown, Rob. (I). Rectifications tardives mais necessaires. Proc- verb. Soc. Linn. Bordeaux, vol. 59 p. LXVIII—LXX. — Auch über Arachniden. Calman, W. T. Arachnida in Zool. Record for 1903 vol. XL. XI 47 pp. Cambridge, F. 0. Pickard. 1901. Further Contributions towards the Knowledge of the Arachnida of Epping Forest. -
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Electromagnetic Field and TGF-Β Enhance the Compensatory
www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine. -
Order Ephemeroptera
Glossary 1. Abdomen: the third main division of the body; behind the head and thorax 2. Accessory flagellum: a small fingerlike projection or sub-antenna of the antenna, especially of amphipods 3. Anterior: in front; before 4. Apical: near or pertaining to the end of any structure, part of the structure that is farthest from the body; distal 5. Apicolateral: located apical and to the side 6. Basal: pertaining to the end of any structure that is nearest to the body; proximal 7. Bilobed: divided into two rounded parts (lobes) 8. Calcareous: resembling chalk or bone in texture; containing calcium 9. Carapace: the hardened part of some arthropods that spreads like a shield over several segments of the head and thorax 10. Carinae: elevated ridges or keels, often on a shell or exoskeleton 11. Caudal filament: threadlike projection at the end of the abdomen; like a tail 12. Cercus (pl. cerci): a paired appendage of the last abdominal segment 13. Concentric: a growth pattern on the opercula of some gastropods, marked by a series of circles that lie entirely within each other; compare multi-spiral and pauci-spiral 14. Corneus: resembling horn in texture, slightly hardened but still pliable 15. Coxa: the basal segment of an arthropod leg 16. Creeping welt: a slightly raised, often darkened structure on dipteran larvae 17. Crochet: a small hook-like organ 18. Cupule: a cup shaped organ, as on the antennae of some beetles (Coleoptera) 19. Detritus: disintegrated or broken up mineral or organic material 20. Dextral: the curvature of a gastropod shell where the opening is visible on the right when the spire is pointed up 21. -
Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24. -
Panoploscelis Scudderi Beier, 1950 And
Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae) Sylvain Hugel To cite this version: Sylvain Hugel. Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae). Zoosys- tema, Museum Nationale d’Histoire Naturelle Paris, 2018, 40 (sp1), pp.327. 10.5252/zoosys- tema2019v41a17. hal-02349677 HAL Id: hal-02349677 https://hal.archives-ouvertes.fr/hal-02349677 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TITLE English Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae). TITLE French Panoploscelis scudderi Beier, 1950 et Gnathoclita vorax (Stoll, 1813) : deux sauterelles aux comportements acoustiques, reproducteurs et de défenses remarquables (Orthoptera, Pseudophyllinae). RUNNING head Two katydids with unusual behaviors Sylvain HUGEL INCI, UPR 3212 CNRS, Université de Strasbourg, 5 rue Blaise Pascal, F-67000 Strasbourg (France) [email protected] ABSTRACT Two species of Eucocconotini Beier, 1960 were collected during the “Our Planet Revisited, Mitaraka 2015” survey in the Mitaraka Mountains belonging to Tumuc-Humac mountain chain in French Guyana: Gnathoclita vorax (Stoll, 1813) and Panoploscelis scudderi Beier, 1950. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
Rassegna Dei Ragni Cavernicoli Italiani
CIRCOLO SPELEOLOGICO ROMANO QUADERNI DI SPELEOLOGIA .1. P. M. BRIGNOLI CATALOGO DEI RAGNI CAVERNICOLI ITALIANI ROMA 1972 CIRCOLO SPELEOLOGICO ROMANO QUADERNI DI SPELEOLOGIA .1. PAOLO MARCELLO BRIGNOLI CATALOGO DEI RAGNI CAVERNICOLI ITALIANI ROMA 1972 Edizioni del CIRCOLO SPELEOLOGICO ROMANO Ente Morale - D.P.R. 26-4-1954, n. 881 - Via Ulisse Aldrovandi, 18 - Roma Tipografico Editrice dell'Orso - Roma 1972 PRESENTAZIONE Con questo primo Quaderno il Circolo Speleologico Romano intende iniziare la pubblicazione di una serie di contributi a carattere mono grafico che compariranno senza periodicità, come supplemento al «No tiziario del C.S.R. ». N ei Quaderni verranno pubblicati lavori speleologici di partico lare impegno e mole come monografie speleologiche regionali, elenchi catastali, cataloghi faunistici o monografie biospeleologiche. La serie inizia con una importante messa a punto sui ragni caver nicoli italiani realizzata dall'amico dotto Paolo Brignoli. Quest' opera viene a colmare una lacuna notevolissima nel suo ge nere. Una delle maggiori difficoltà per chi si occupa di biospeleologia deriva dal fatto che la letteratura sull'argomento è estremamente di spersa: da importanti riviste scientifiche internazionali fino a notiziari interni di gruppi grotte, frequentemente non a stampa e a volte con vita limitata a pochissimi anni. Questa circostanza fa sì che il reperimento di un articolo risulti spesso estremamente laborioso se non impossibile. Inoltre questo cata logo riguarda uno dei gruppi sistematici più travagliati, dove il rapido evolversi e precisarsi delle conoscenze tassonomiche rende pericolosa la consultazione di fonti che non siano più che qualificate e aggiornate. Il numero delle specie (177) e delle grotte (711) trattate mostra che in fondo possiamo contare su una discreta conoscenza per la fauna italiana anche di un gruppo così trascurato dagli speleologi come lo sono i ragni. -
Hanah, a Replacement Name for Hana Lau, Stokvis, Ofwegen & Reimer
A peer-reviewed open-access journal ZooKeys 918: 161–162Hanah (2020), a replacement name for Hana Lau, Stokvis, Ofwegen & Reimer, 2018 161 doi: 10.3897/zookeys.918.51123 CORRIGENDA http://zookeys.pensoft.net Launched to accelerate biodiversity research Corrigenda: Hanah, a replacement name for Hana Lau, Stokvis, Ofwegen & Reimer, 2018 (preoccupied name) Yee Wah Lau1, Frank R. Stokvis2, Leen van Ofwegen2, James D. Reimer1 1 University of the Ryukyus, Nishihara, Okinawa, Japan 2 Naturalis Biodiversity Center, Leiden, Netherlands Corresponding author: Yee Wah Lau ([email protected]) Academic editor: B. W. Hoeksema | Received 16 February 2020 | Accepted 19 February 2020 | Published 12 March 2020 http://zoobank.org/BA805D39-A503-4D6E-AAE1-4900823B6B18 Citation: Lau YW, Stokvis FR, van Ofwegen L, Reimer JD (2020) Corrigenda: Hanah, a replacement name for Hana Lau, Stokvis, Ofwegen & Reimer, 2018 (preoccupied name). ZooKeys 918: 161–162. https://doi.org/10.3897/ zookeys.918.51123 Abstract This is an addendum to the availability of the generic name Hana Lau, Stokvis, Ofwegen & Reimer, 2018 within the octocoral family Arulidae. Here, the replacement name Hanah is proposed, as Hana Lau, Stokvis, Ofwegen & Reimer, 2018 is a junior homonym to senior homonym Hana Kukalova-Peck, 1975, a genus within the family Hanidae of the Palaeozoic insect order Megasecoptera. Keywords Arulidae, Hana, homonymy, Octocorallia, replacement name, Stolonifera Class Anthozoa Subclass Octocorallia Order Alcyonacea Suborder Stolonifera Family Arulidae Genus Hanah nom. nov. Hana Lau, Stokvis, Ofwegen & Reimer, 2018. ZooKeys 790: 1–19. (Anthozoa: Oc- tocorallia: Alcyonacea: Stolonifera: Arulidae). Preoccupied by Hana Kukalova-Peck, 1975. Psyche 82: 1–19. (Insecta: Pterygota: Palaeoptera: Palaeodictyopteroidea: Megasecoptera: Hanidae). -
Morpholo(;Y of the Insect Abdomen
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 85, NUMBER b morpholo(;y of the insect abdomen FART I. GENERAL STRliCTllRr^ OE THli ABDOMEJ AND rrS APPENDAGES BY R. E. SNODGRASS Bureau of Entomology, U. S. Department of Agriculture (l'UBLlC\Tloy 3124) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION NOVEMBER 6, 1931 BALTIMORE, MD., U. S. A. MORPHOLOGY OF THE INSECT ABDOMEN PART I. GENERAL STRUCTURE OF THE ABDOMEN AND ITS APPENDAGES By R. E. SNODGRASS Bureau of Entomology U. S. Dkpartment of Aoriculture CONTENTS Introduction i I. The abdominal sclerotization 6 II. The abdominal segments 14 The visceral segments 16 The genital segments i" The postgenital segments 19 III. Tlie abdominal musculature 28 General plan of the abdominal musculature 31 The abdominal musculature of adult Pterygota 42 The abdominal musculature of endopterygote larvae 48 The abdominal musculature of Apterygota 56 IV^. The abdominal appendages 62 Body appendages of Chilopoda 65 Abdominal appendages of Crustacea 68 The abdominal appendages of Protura 70 General structure of the abdominal appendages of insects 71 The abdominal appendages of Collembola 72 The abdominal appendages of Thysanura 74 The abdominal gills of ephemerid larvae 77 Lateral abdominal appendages of sialid and coleopterous larvae. ... 79 The abdominal legs of lepidopterous larvae 83 The gonopods 88 The cerci (uropods ) 92 The terminal appendages of endopterygote larvae 96 Terminal lobes of the paraprocts 107 Aforphology of the abdominal appendages loS Ablireviations used on the figures 122 l\cferences 123 INTRODUCTION The incision of the insect into head, thorax, and abdomen is in general more evident in the cervical region than at the thoracico- abdominal line ; but anatomically the insect is more profoundly divided between the thorax and the abdomen than it is between the head and Smithsonian Miscellaneous Collections, Vol. -
Grooming Behavior in Diplura (Insecta: Apterygota)
GROOMING BEHAVIOR IN DIPLURA (INSECTA: APTERYGOTA) BY BARRY D. VALENTINE AND MICHAEL J. GLORIOSO Departments of Zoology & Entomology respectively, The Ohio State University, Columbus, Ohio 43210 Insect grooming studies are adding an important new dimension to knowledge of comparative behavior and evolution. Recent advances include an overview of a few selected movements of insects and myriopods (Jander, 1966), studies of the functional morphology of grooming structures (Hlavac, 1975), extensive reports about individual orders (Coleoptera: Valentine, 1973; Hymenoptera: Far- ish, 1972), quantitative studies at species levels (Chironomidae: Stoffer, in preparation; Drosophila: Lipps, 1973), and many less inclusive works. All such studies have difficulties which include the inability to know when an observed sequence is complete, the enormous number of potential taxa, the problem of generalizing about families and orders from small samples of individuals or species, and the absence of data from primitive or odd groups which may be critical for interpreting evolutionary sequences. The first three difficulties can be partially solved by increasing sample sizes and combining observations; however, the fourth can be solved only by availability. Grooming in the apterygote order Diplura is a good example because we can find only incomplete reports on one species. Recently, we have studied ten live specimens representing two families and three species; the data obtained provide an important picture of grooming behavior in one of the most primitive surviving orders of insects. Our observations greatly extend the limited discussion of grooming in the European japygid Dipljapyx humberti (Grassi, 1886) reported by Pages (1951, 1967). Data on Dipljapyx are incorporated here, but have not been verified by us. -
Dermaptera Hindwing Structure and Folding: New Evidence for Familial, Ordinal and Superordinal Relationships Within Neoptera (Insecta)
Eur. J. Entorno!. 98: 445-509, 2001 ISSN 1210-5759 Dermaptera hindwing structure and folding: New evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta) Fabian HAAS1 and Jarmila KUKALOVÂ-PECK2 1 Section ofBiosystematic Documentation, University ofUlm, Helmholtzstr. 20, D-89081 Ulm, Germany; e-mail: [email protected] 2Department ofEarth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; e-mail: [email protected] Key words.Dermaptera, higher phylogenetics, Pterygota, insect wings, wing folding, wing articulation, protowing Abstract. The Dermaptera are a small order of insects, marked by reduced forewings, hindwings with a unique and complicated folding pattern, and by pincer-like cerci. Hindwing characters of 25 extant dermapteran species are documented. The highly derived hindwing venation and articulation is accurately homologized with the other pterygote orders for the first time. The hindwing base of Dermaptera contains phylogenetically informative characters. They are compared with their homologues in fossil dermapteran ancestors, and in Plecoptera, Orthoptera (Caelifera), Dictyoptera (Mantodea, Blattodea, Isoptera), Fulgoromorpha and Megaloptera. A fully homologized character matrix of the pterygote wing complex is offered for the first time. The wing venation of the Coleo- ptera is re-interpreted and slightly modified . The all-pterygote character analysis suggests the following relationships: Pterygota: Palaeoptera + Neoptera; Neoptera: [Pleconeoptera + Orthoneoptera] +