Serotonin and Brain Development

Total Page:16

File Type:pdf, Size:1020Kb

Serotonin and Brain Development SEROTONIN AND BRAIN DEVELOPMENT Monsheel S. K. Sodhi and Elaine Sanders-Bush Departments of Pharmacology and Psychiatry Vanderbilt University Nashville, Tennessee 37232 I. Introduction II. The Discovery of Serotonin and Classification of Serotonin Receptors A. Distribution and Projections of the Serotonergic System III. The Role of Serotonin in Developmental Plasticity A. Serotonergic Projections during Brain Development B. Growth Factors Influencing the Development of Serotonergic Neurons C. The Role of Serotonin as a Growth Factor D. Serotonin Receptors and Developmental Plasticity IV. Manipulation of the Serotonergic System Alters Synaptic Plasticity A. Tryptophan and Serotonin Depletion Studies B. Experimental Models of Synaptic Plasticity V. Does Dysfunction of Serotonergic Signaling Result in Impaired Brain Development? A. The Role of Serotonin in Learning and Memory B. Autism and Serotonin C. The Role of Serotonin in Stress and Anxiety D. Serotonergic Influences on Synaptic Plasticity in AVective Disorders E. Altered Synaptic Plasticity in Schizophrenia F. Down’s Syndrome, Mental Retardation, and Serotonin VI. Conclusions References The role of the serotonergic system in the neuroplastic events that create, repair, and degenerate the brain has been explored. Synaptic plasticity occurs throughout life and is critical during brain development. Evidence from bio- chemical, pharmacological, and clinical studies demonstrates the huge import- ance of an intact serotonergic system for normal central nervous system (CNS) function. Serotonin acts as a growth factor during embryogenesis, and serotonin receptor activity forms a crucial part of the cascade of events leading to changes in brain structure. The serotonergic system interacts with brain-derived neuro- trophic factor (BDNF), S100 , and other chemical messengers, in addition to its cross talk with the GABAergic, glutamatergic, and dopaminergic neurotrans- mitter systems. Disruption of these processes may contribute to CNS disorders that have been associated with impaired development. Furthermore, many psy- chiatric drugs alter serotonergic activity and have been shown to create changes in brain structure with long-term treatment. However, the mechanisms for their INTERNATIONAL REVIEW OF 111 Copyright 2004, Elsevier Inc. NEUROBIOLOGY, VOL. 59 All rights reserved. 0074-7742/04 $35.00 112 SODHI AND SANDERS-BUSH therapeutic eYcacy are still unclear. Treatments for psychiatric illness are usually chronic and alleviate psychiatric symptoms, rather than cure these diseases. Therefore, greater exploration of the serotonin system during brain development and growth could lead to real progress in the discovery of treatments for mental disorders. I. Introduction Serotonin (5-hydroxytryptamine, 5-HT), the ‘‘happy hormone,’’ has a phylo- genetically ancient role in neural transmission (Turlejski, 1996). Because the serotonergic system has a widespread distribution in the CNS, it influences almost every sphere of mammalian physiology, from cardiovascular regulation (Miyata et al., 2000; Nebigil et al., 2000; Thorin et al., 1990), respiration, the gastrointestinal system (Kato et al., 1999), pain sensitivity, and thermoregulation to more centrally controlled functions. The latter include the maintenance of circadian rhythm, appetite, aggression, sensorimotor activity, sexual behavior, mood, cognition, learning, and memory. Hence drugs with serotonergic activity are used to treat the aVective disorders schizophrenia (AbiDargham et al., 1996; Breier, 1995; Kapur and Remington, 1996; Meltzer, 2002; Ohuoha et al., 1993; Sodhi and Murray, 1997), anxiety (Gross et al., 2002), stress, eating disorders (Bray, 2000; GuyGrand, 1995; Halford, 2001; Heal et al., 1998; Heisler et al., 1998b; Hesselink and Sambunaris, 1995; Jallon and Picard, 2001; Koponen et al., 2002; Luque and Rey, 1999; McNeely and Goa, 1998; Prasad, 1998; Weissman, 2001), and deliberate self-harm (Holden, 1995). In addition, personality dysfunctions such as addictive behaviors, aggression, psychopathic and sociopathic behavior, attention-deficit hyperactivity, and autism are also as- sociated with altered serotonergic transmission. Indeed, new serotonin receptor ligands are being explored as possible treatments for Alzheimer’s disease, as they appear to improve memory (Sumiyoshi et al., 2001), obesity (Bray, 2000; Rothman and Baumann, 2002; Stunkard and Allison, 2003; Wechsler, 1998), and epilepsy (Chadwick et al., 1977; Chugani and Chugani, 2003; Dailey et al., 1992; Deahl and Trimble, 1991; Fromm et al., 1977; Heisler et al., 1998b; Lunardi et al., 1995; Monaco et al., 1995; Savic et al., 2001; Statnick et al., 1996; Yan et al., 1994). Although increasing knowledge of serotonergic function is propelling many advances in the therapeutics of psychiatric and behavioral disorders, drugs in clinical use often treat the disease symptoms instead of relieving or preventing the causes. Moreover, treatment regimes are often lengthy or lifelong, sometimes with severe side eVects. As yet the causes of psychiatric disease are unknown, therefore the role of serotonin in the etiology or progression of these disorders SEROTONIN AND BRAIN DEVELOPMENT 113 requires exploration in order to facilitate improvements in medication and prog- noses. There is increasing support for the hypothesis that impaired development and synaptic plasticity contribute to the etiologies of many central nervous system (CNS) diseases. Plasticity is defined as functionally relevant structural adaptations performed by the CNS following genetic or environmental challenges. Neuronal plasticity is essential for the survival of an individual in a constantly changing environment. It is a dynamic process based on the ability of neuronal systems, brain nuclei synapses, single nerve cells, and receptors to adapt to challenges. Plasticity reveals itself in a number of ways, which range from altered gene expression or changes in neurotransmitter release to changes in behavior or phenotype. Synaptic plasti- city is constant throughout life and is especially important during development. Connections between neurons of the CNS are capable of being dismantled and reconstructed in response to changes in the physiological environment, therefore stress, malnutrition, sleep, hormones, and drugs can all produce changes in brain structure. Accumulating research suggests that serotonin plays an important role in synaptic plasticity and brain development. In this review we attempt to explore this evidence and its implications for impaired brain development and psychiatric illness. II. The Discovery of Serotonin and Classification of Serotonin Receptors The chemical 5-hydroxytryptamine (5-HT) was first isolated in serum and, because of its powerful vasoconstrictive eVects, was dubbed ‘‘serotonin’’ (Rapport, 1948). Serotonin was later detected in the brain (Twarog and Page, 1953). In 1957, Gaddum and Picarelli reported the existence of multiple sero- tonin receptor subtypes, which they called 5-HT-M and 5-HT-D, after their an- tagonists, morphine and dibenzyline, respectively. Peroutka and Snyder (1979) reclassified these receptors based on radioligand-binding studies in brain hom- 3 ogenates. The 5-HT1 receptor was labeled by [ H]5-HT, whereas the 5-HT2 receptor (corresponding to 5-HT-D) was sensitive to the dopamine receptor 3 ligand [ H]spiperone. By 1986, the M receptors were renamed 5-HT3 receptors (Bradley,1986),werefoundtobetheonlyionotropicsubtypeofthe5-HTreceptor, and were detected to be at low density in limbic and striatal areas (Abi-Dargham et al., 1993). [3H]Lysergic acid diethylamide (LSD), a psychotomimetic com- pound with a structure similar to serotonin, was found to have high aYnity for serotonin receptors. Subsequently, heterogeneity was revealed in the 5-HT1 re- ceptor class; 5-HT1A receptors could be distinguished from 5-HT1B receptors (equivalent to the human 5-HT1D receptor) by the high aYnity of the former for spiperone (Pedigo et al., 1981). The use of receptor autoradiographic 114 SODHI AND SANDERS-BUSH techniques demonstrated the existence of a third 5-HT1 receptor in the porcine choroid plexus, the 5-HT1C subtype (later renamed 5-HT2C), through its high aYnity for [3H]mesulergine and [3H]5-HT (Pazos et al., 1984). The application of molecular cloning techniques in the late 1980s revolutionized protein discov- ery and to date, 14 distinct subtypes of mammalian serotonin receptors have been cloned. Both molecular structure and pharmacological properties determine their classification, and under a revised system, the serotonin receptors are now allocated to seven distinct families (Hoyer et al., 1994). The characteristics and distributions of the diVerent subtypes of serotonin receptors are summarized in Table I. A detailed review of their pharmacology has been compiled by Barnes and Sharp (1999). A. Distribution and Projections of the Serotonergic System Serotonergic neurons are part of one of the most widely distributed neuronal systems in the mammalian brain; this neuronal network is also one of the earliest to develop in the embryo. Serotonin-containing neurons projecting to the forebrain originate in four brain stem nuclei, the principal of these being median and dorsal raphe nuclei. The dorsal raphe nucleus projects thin serotonin fibers, which are more abundant in the cortex, whereas the median raphe nucleus provides thick serotonin fibers with large varicosities that are relatively sparse and more abun- dant in the hippocampus (Kosofsky and Molliver, 1987). The
Recommended publications
  • 4695389.Pdf (3.200Mb)
    Non-classical amine recognition evolved in a large clade of olfactory receptors The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Li, Qian, Yaw Tachie-Baffour, Zhikai Liu, Maude W Baldwin, Andrew C Kruse, and Stephen D Liberles. 2015. “Non-classical amine recognition evolved in a large clade of olfactory receptors.” eLife 4 (1): e10441. doi:10.7554/eLife.10441. http://dx.doi.org/10.7554/ eLife.10441. Published Version doi:10.7554/eLife.10441 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23993622 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE Non-classical amine recognition evolved in a large clade of olfactory receptors Qian Li1, Yaw Tachie-Baffour1, Zhikai Liu1, Maude W Baldwin2, Andrew C Kruse3, Stephen D Liberles1* 1Department of Cell Biology, Harvard Medical School, Boston, United States; 2Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, United States; 3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States Abstract Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation.
    [Show full text]
  • Strategies for Managing Sexual Dysfunction Induced by Antidepressant Medication
    King’s Research Portal DOI: 10.1002/14651858.CD003382.pub3 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Taylor, M. J., Rudkin, L., Bullemor-Day, P., Lubin, J., Chukwujekwu, C., & Hawton, K. (2013). Strategies for managing sexual dysfunction induced by antidepressant medication. Cochrane Database of Systematic Reviews, (5). https://doi.org/10.1002/14651858.CD003382.pub3 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Neurotransmitters-Drugs Andbrain Function.Pdf
    Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Edited by R. A. Webster Department of Pharmacology, University College London, UK JOHN WILEY & SONS, LTD Chichester Á New York Á Weinheim Á Brisbane Á Singapore Á Toronto Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Copyright # 2001 by John Wiley & Sons Ltd. Bans Lane, Chichester, West Sussex PO19 1UD, UK National 01243 779777 International ++44) 1243 779777 e-mail +for orders and customer service enquiries): [email protected] Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P0LP,UK, without the permission in writing of the publisher. Other Wiley Editorial Oces John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd.
    [Show full text]
  • Differential Regulation of Mecp2 Phosphorylation in the CNS by Dopamine and Serotonin
    Neuropsychopharmacology (2012) 37, 321–337 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org Differential Regulation of MeCP2 Phosphorylation in the CNS by Dopamine and Serotonin 1 1 2 1,2,3,4 ,1 Ashley N Hutchinson , Jie V Deng , Dipendra K Aryal , William C Wetsel and Anne E West* 1 2 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke 3 University Medical Center, Durham, NC, USA; Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, 4 Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA Systemic administration of amphetamine (AMPH) induces phosphorylation of MeCP2 at Ser421 (pMeCP2) in select populations of neurons in the mesolimbocortical brain regions. Because AMPH simultaneously activates multiple monoamine neurotransmitter systems, here we examined the ability of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) to induce pMeCP2. Selective blockade of the DA transporter (DAT) or the 5-HT transporter (SERT), but not the NE transporter (NET), was sufficient to induce pMeCP2 in the CNS. DAT blockade induced pMeCP2 in the prelimbic cortex (PLC) and nucleus accumbens (NAc), whereas SERT blockade induced pMeCP2 only in the NAc. Administration of selective DA and 5-HT receptor agonists was also sufficient to induce pMeCP2; however, the specific combination of DA and 5-HT receptors activated determined the regional- and cell-type specificity of pMeCP2 induction. The D1-class DA receptor agonist SKF81297 induced pMeCP2 widely; however, coadministration of the D2-class agonist quinpirole restricted the induction of pMeCP2 to GABAergic interneurons of the NAc.
    [Show full text]
  • Original Article E€Ects of Serotonin 1A Agonist on Acute Spinal Cord Injury
    Spinal Cord (2002) 40, 519 ± 523 ã 2002 International Spinal Cord Society All rights reserved 1362 ± 4393/02 $25.00 www.nature.com/sc Original Article Eects of serotonin 1A agonist on acute spinal cord injury Y Saruhashi*,1, Y Matsusue1 and S Hukuda2 1Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu, Japan; 2Tane-daini Hospital, Osaka, Japan Study design: We evaluated the eects of serotonin (5-HT) agonists on in vitro models of spinal cord compressive injury. Evoked potentials in injured rat spinal cords (n=24) were recorded during perfusion with 5-HT agonists. Objectives: To evaluate the therapeutic eects of 5-HT agonists on the recovery of compound action potentials in injured spinal cords. Methods: Rat dorsal columns were isolated, placed in a chamber, and injured by extradural compression with a clip. Conducting action potentials were activated by supramaximal constant current electrical stimuli and recorded during perfusion with 5-HT agonists and antagonists. Results: After inducing compression injuries, mean action potential amplitudes were reduced to 33.9+5.4% of the pre-injury level. After 120 min of perfusion with Ringer's solution, the mean amplitudes recovered to 62.8+8.4% of the pre-injury level. At a concentration of 100 mM, perfusion with tandospirone (a 5-HT1A agonist) resulted in a signi®cantly greater recovery of mean action potential amplitudes at 2 h after the injury (86.2+6.9% of pre-injury value) as compared with the control Ringer's solution (62.8+8.4% of pre-injury value, P50.05). In contrast, quipazine (a 5-HT2A agonist) accelerated the decrease of amplitude (54.5+11.7% of pre-injury value).
    [Show full text]
  • File Download
    Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord Elizabeth A. Gozal, Emory University Brannan E. O'Neill, Emory University Michael A. Sawchuk, Emory University Hong Zhu, Emory University Mallika Halder, Emory University Chou Ching-Chieh , Emory University Shawn Hochman, Emory University Journal Title: Frontiers in Neural Circuits Volume: Volume 8 Publisher: Frontiers | 2014-11-07, Pages 134-134 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3389/fncir.2014.00134 Permanent URL: https://pid.emory.edu/ark:/25593/mr95r Final published version: http://dx.doi.org/10.3389/fncir.2014.00134 Copyright information: © 2014 Gozal, O'Neill, Sawchuk, Zhu, Halder, Chou and Hochman. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits distribution of derivative works, making multiple copies, distribution, public display, and publicly performance, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author, copyright and license notices be kept intact. Accessed September 27, 2021 11:18 AM EDT ORIGINAL RESEARCH ARTICLE published: 07 November 2014 NEURAL CIRCUITS doi: 10.3389/fncir.2014.00134 Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord Elizabeth A. Gozal , Brannan E. O’Neill , Michael A. Sawchuk , Hong Zhu , Mallika Halder , Ching-Chieh Chou and Shawn Hochman* Physiology Department, Emory University, Atlanta, GA, USA Edited by: The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized Brian R.
    [Show full text]
  • Antipsychotics
    The Fut ure of Antipsychotic Therapy (page 7 in syllabus) Stepp,,hen M. Stahl, MD, PhD Adjunct Professor, Department of Psychiatry Universityyg of California, San Diego School of Medicine Honorary Visiting Senior Fellow, Cambridge University, UK Sppyonsored by the Neuroscience Education Institute Additionally sponsored by the American Society for the Advancement of Pharmacotherapy This activity is supported by an educational grant from Sunovion Pharmaceuticals Inc. Copyright © 2011 Neuroscience Education Institute. All rights reserved. Individual Disclosure Statement Faculty Editor / Presenter Stephen M. Stahl, MD, PhD, is an adjunct professor in the department of psychiatry at the University of California, San Diego School of Medicine, and an honorary visiting senior fellow at the University of Cambridge in the UK. Grant/Research: AstraZeneca, BioMarin, Dainippon Sumitomo, Dey, Forest, Genomind, Lilly, Merck, Pamlab, Pfizer, PGxHealth/Trovis, Schering-Plough, Sepracor/Sunovion, Servier, Shire, Torrent Consultant/Advisor: Advent, Alkermes, Arena, AstraZeneca, AVANIR, BioMarin, Biovail, Boehringer Ingelheim, Bristol-Myers Squibb, CeNeRx, Cypress, Dainippon Sumitomo, Dey, Forest, Genomind, Janssen, Jazz, Labopharm, Lilly, Lundbeck, Merck, Neuronetics, Novartis, Ono, Orexigen, Otsuka, Pamlab, Pfizer, PGxHealth/Trovis, Rexahn, Roche, Royalty, Schering-Plough, Servier, Shire, Solvay/Abbott, Sunovion/Sepracor, Valeant, VIVUS, Speakers Bureau: Dainippon Sumitomo, Forest, Lilly, Merck, Pamlab, Pfizer, Sepracor/Sunovion, Servier, Wyeth Copyright © 2011 Neuroscience Education Institute. All rights reserved. Learninggj Objectives • Differentiate antipsychotic drugs from each other on the basis of their pharmacological mechanisms and their associated therapeutic and side effects • Integrate novel treatment approaches into clinical practice according to best practices guidelines • Identify novel therapeutic options currently being researched for the treatment of schizophrenia Copyright © 2011 Neuroscience Education Institute.
    [Show full text]
  • 5-HT1A Receptor-Dependent Modulation of Emotional
    www.nature.com/scientificreports OPEN 5-HT1A receptor-dependent modulation of emotional and neurogenic defcits elicited by Received: 8 May 2017 Accepted: 19 January 2018 prolonged consumption of alcohol Published: xx xx xxxx Arnauld Belmer 1,2, Omkar L. Patkar1,2, Vanessa Lanoue3 & Selena E. Bartlett 1,2 Repeated episodes of binge-like alcohol consumption produce anxiety, depression and various deleterious efects including alterations in neurogenesis. While the involvement of the serotonin receptor 1 A (5-HT1A) in the regulation of anxiety-like behavior and neurogenesis is well documented, its contribution to alcohol withdrawal-induced anxiety and alcohol-induced defcits in neurogenesis is less documented. Using the Drinking-In-the-Dark (DID) paradigm to model chronic long-term (12 weeks) binge-like voluntary alcohol consumption in mice, we show that the selective partial activation of 5-HT1A receptors by tandospirone (3 mg/kg) prevents alcohol withdrawal-induced anxiety in a battery of behavioral tests (marble burying, elevated-plus-maze, open-feld), which is accompanied by a robust decrease in binge-like ethanol intake (1 and 3 mg/kg). Furthermore, using triple immunolabelling of proliferation and neuronal diferentiation markers, we show that long-term DID elicits profound defcits in neurogenesis and neuronal fate specifcation in the dorsal hippocampus that are entirely reversed by a 2-week chronic treatment with the 5-HT1A partial agonist tandospirone (3 mg/kg/day). Together, our results confrm previous observations that 5-HT1A receptors play a pivotal role in alcohol drinking behavior and the associated emotional and neurogenic impairments, and suggest that 5-HT1A partial agonists represent a promising treatment strategy for alcohol abuse.
    [Show full text]
  • Antidepressant Potential of Nitrogen-Containing Heterocyclic Moieties: an Updated Review
    Review Article Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review Nadeem Siddiqui, Andalip, Sandhya Bawa, Ruhi Ali, Obaid Afzal, M. Jawaid Akhtar, Bishmillah Azad, Rajiv Kumar Department of ABSTRACT Pharmaceutical Chemistry, Depression is currently the fourth leading cause of disease or disability worldwide. Antidepressant is Faculty of Pharmacy, Jamia Hamdard approved for the treatment of major depression (including paediatric depression), obsessive-compulsive University, Hamdard disorder (in both adult and paediatric populations), bulimia nervosa, panic disorder and premenstrual Nagar, New Delhi - dysphoric disorder. Antidepressant is a psychiatric medication used to alleviate mood disorders, such as 110 062, India major depression and dysthymia and anxiety disorders such as social anxiety disorder. Many drugs produce an antidepressant effect, but restrictions on their use have caused controversy and off-label prescription a Address for correspondence: risk, despite claims of superior efficacy. Our current understanding of its pathogenesis is limited and existing Dr. Sandhya Bawa, E-mail: sandhyabawa761@ treatments are inadequate, providing relief to only a subset of people suffering from depression. Reviews of yahoo.com literature suggest that heterocyclic moieties and their derivatives has proven success in treating depression. Received : 08-02-11 Review completed : 15-02-11 Accepted : 17-02-11 KEY WORDS: Antidepressant, depression, heterocyclic epression is a chronic, recurring and potentially life- monoamine oxidase inhibitors (MAOIs, e.g. Nardil®) tricyclic D threatening illness that affects up to 20% of the population antidepressants (TCAs, e.g. Elavil). They increases the synaptic across the globe.[1] The etiology of the disease is suboptimal concentration of either two (5-HT and NE) or all three (5-HT, concentrations of the monoamine neurotransmitters serotonin NE and dopamine (DA)) neurotransmitters.
    [Show full text]
  • Receptor Interaction Profiles of 4-Alkoxy-Substituted 2,5-Dimethoxyphenethylamines and Related Amphetamines
    ORIGINAL RESEARCH published: 28 November 2019 doi: 10.3389/fphar.2019.01423 Receptor Interaction Profiles of 4-Alkoxy-Substituted 2,5-Dimethoxyphenethylamines and Related Amphetamines Karolina E. Kolaczynska 1, Dino Luethi 1,2, Daniel Trachsel 3, Marius C. Hoener 4 and Matthias E. Liechti 1* 1 Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland, 2 Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria, 3 ReseaChem GmbH, Burgdorf, Switzerland, 4 Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland Background: 2,4,5-Trimethoxyamphetamine (TMA-2) is a potent psychedelic compound. Structurally related 4-alkyloxy-substituted 2,5-dimethoxyamphetamines and phenethylamine congeners (2C-O derivatives) have been described but their pharmacology Edited by: is mostly undefined. Therefore, we examined receptor binding and activation profiles of M. Foster Olive, these derivatives at monoamine receptors and transporters. Arizona State University, United States Methods: Receptor binding affinities were determined at the serotonergic 5-HT1A, 5-HT2A, Reviewed by: Luc Maroteaux, and 5-HT2C receptors, trace amine-associated receptor 1 (TAAR1), adrenergic α1 and INSERM U839 Institut du Fer à α2 receptors, dopaminergic D2 receptor, and at monoamine transporters, using target- Moulin, France Simon D. Brandt, transfected cells. Additionally, activation of 5-HT2A and 5-HT2B receptors and TAAR1 was Liverpool John Moores University, determined. Furthermore, we assessed monoamine transporter inhibition. United Kingdom Results: Both the phenethylamine and amphetamine derivatives (Ki = 8–1700 nM and *Correspondence: Matthias E. Liechti 61–4400 nM, respectively) bound with moderate to high affinities to the 5-HT2A receptor [email protected] with preference over the 5-HT1A and 5-HT2C receptors (5-HT2A/5-HT1A = 1.4–333 and Specialty section: 5-HT2A/5-HT2C = 2.1–14, respectively).
    [Show full text]
  • A Systematic Review of the Effectiveness of Antianxiety and Antidepressive Agents for Functional Dyspepsia
    doi: 10.2169/internalmedicine.9099-17 Intern Med 56: 3127-3133, 2017 http://internmed.jp 【 ORIGINAL ARTICLE 】 A Systematic Review of the Effectiveness of Antianxiety and Antidepressive Agents for Functional Dyspepsia Mariko Hojo 1, Akihito Nagahara 2, Daisuke Asaoka 1, Yuji Shimada 2, Hitoshi Sasaki 3, Kohei Matsumoto 1, Tsutomu Takeda 1, Hiroya Ueyama 1, Kenshi Matsumoto 1 and Sumio Watanabe 1 Abstract: Objective Functional dyspepsia (FD) is defined as persistent or recurrent pain or discomfort centered in the upper abdomen without organic disease. Psychosocial factors have been proposed as an important element in the pathophysiology of FD. Therefore, psychotropic agents having antianxiety or antidepressive action are ex- pected to alleviate FD. We previously reported on the treatment of FD using such agents in a systematic re- view, wherein the effectiveness of the agents on FD was suggested, although there were several limitations. We searched for articles on this subject after our systematic review and re-reviewed them systematically. Methods Articles were searched for in MEDLINE from 2003 to 2014 using terms related to antianxiety or antidepressive agents. Clinical studies in which the effectiveness of such agents was clearly stated were se- lected from the retrieved articles. The newly selected and previously selected studies were combined, and sta- tistical analyses were carried out. Results Nine studies were selected. Five of the studies indicated a significant symptomatic improvement us- ing psychotropic drugs. A statistical analysis suggested a significant treatment effect of psychotropic agents having antianxiety or antidepressive action [pooled relative risk (PRR), 0.72; 95% confidence interval (95% CI), 0.52-0.99; p=0.0406] but did not show a significant benefit of treatment with agents having an antide- pressive action alone (PRR, 0.63; 95% CI, 0.38-1.03; p=0.0665).
    [Show full text]
  • Synergistic Action of 5-HT2A Antagonists and Selective Serotonin Reuptake Inhibitors in Neuropsychiatric Disorders
    Neuropsychopharmacology (2003) 28, 402–412 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Synergistic Action of 5-HT2A Antagonists and Selective Serotonin Reuptake Inhibitors in Neuropsychiatric Disorders ,1 2 3 2 Gerard J Marek* , Linda L Carpenter , Christopher J McDougle and Lawrence H Price 1Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; 2Department of Psychiatry and Human, Brown Medical School, Mood 3 Disorders Program, Behavior, Butler Hospital, Providence, RI, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA Recently, the addition of drugs with prominent 5-HT2 receptor antagonist properties (risperidone, olanzapine, mirtazapine, and mianserin) to selective serotonin reuptake inhibitors (SSRIs) has been shown to enhance therapeutic responses in patients with major depression and treatment-refractory obsessive–compulsive disorder (OCD). These 5-HT antagonists may also be effective in 2 ameliorating some symptoms associated with autism and other pervasive developmental disorders (PDDs). At the doses used, these drugs would be expected to saturate 5-HT2A receptors. These findings suggest that the simultaneous blockade of 5-HT2A receptors and activation of an unknown constellation of other 5-HT receptors indirectly as a result of 5-HT uptake inhibition might have greater therapeutic efficacy than either action alone. Animal studies have suggested that activation of 5-HT1A and 5-HT2C receptors may counteract the effects of activating 5-HT2A receptors. Additional 5-HT receptors, such as the 5-HT1B/1D/5/7 receptors, may similarly counteract the effects of 5-HT receptor activation. These clinical and preclinical observations suggest that the combination of highly 2A selective 5-HT antagonists and SSRIs, as well as strategies to combine high-potency 5-HT receptor and 5-HT transporter blockade in 2A 2A a single compound, offer the potential for therapeutic advances in a number of neuropsychiatric disorders.
    [Show full text]