Music Technology I TEDT1245 Semester 1 What Is MIDI? MIDI
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
PD1: Sequencer
21M.380 Music and Technology Sound Design Pd assignment 1 (pd1) Sequencer Due: Monday, February 22, 2016, 9:30am Submit to: MIT Learning Modules Assignments 5% of total grade 1 Instructions Build a music sequencer in Pure Data. If you do not know what a sequencer is, the Online Sequencer1 will give you a practical under- 1 http://onlinesequencer.net/ standing very quickly. 2 Restrictions • Only Pd objects from Pd vanilla are allowed. Submissions that rely on objects from Pd extended will not be accepted! • Messages, number boxes, GUI elements, symbols, arrays, tables, and comments of all kinds are allowed. • Your patch should not rely on any external hardware besides keyboard and mouse. This rules out any MIDI controllers. 3 Guidelines 3.1 Programming guidelines It might help to think of your sequencer as an engineering problem in three parts and address them in the following order: Sound design Start by trying to build some interesting sounds that can be tested in isolation. Use the three simple sounds from figure 1 as a starting point and create additional sounds by adjusting the parameters in that patch as instructed. Try to introduce variety and come up with something that sounds interesting! 2 Time base Consult our main textbook for inspiration on how 2 Farnell 2010. to provide a time base that organizes the playback of your 1 of 4 21M.380, pd1 assignment HOW TO RUN THIS PATCH: ; 1 Turn on DSP by clicking this in run mode: pd dsp 1 2 In run mode, click either of the two [bang( messages or the square toggle box below 3 Adjust the numbers as instructed to create different sounds. -
Brief History of Electronic and Computer Musical Instruments
Brief History of Electronic and Computer Musical Instruments Roman Kogan April 15th, 2008 1 Theremin: the birth of electronic music It is impossible to speak of electronic music and not speak of Theremin (remember that high-pitch melody sound sound in Good Vibrations ?) Theremin was the instrument that has started it all. Invented remarkably early - around 1917 - in Russia by Leon Termen (or Theremin, spelling varies) it was the first practical (and portable) electronic music instrument, and also the one that brought the electronic sound to the masses (see [27]). It was preceded by Thelarmonium, a multi-ton monstrocity that never really get a lot of attention (although technically very innovative, see [25]), and some other instruments that fell into obscurity. On the other hand, Leon Theremin got popular well beyond the Soviet Union (where even Lenin got to play his instrument once!). He became a star in the US and taught a generation of Theremin players, Clara Rockmore being the most famous one. In fact, RCA even manufactured Theremins under Leon's design in 1929 ( [27])!. So what was this instrument ? It was a box with two antennas that produced continuous, high-pitch sounds. The performer would approach the instrument and wave hands around the antennas to play it. The distance to the right (vertical) antenna would change the pitch, while the distance to the left (horizontal) antenna would change the volume of the sound (see [2], [3] for more technical details). The Theremin is difficult to play, since, like on violin, the notes and the volume are not quantized (the change in pitch is continuous). -
Exploring Polyrhythms, Polymeters, and Polytempi with the Universal Grid Sequencer Framework
Exploring Polyrhythms, Polymeters, and Polytempi with the Universal Grid Sequencer framework SAMUEL J. HUNT, Creative Technologies Laboratory Fig. 1. Large format grid controller, made from 4 smaller grid controllers Polyrhythms, Polymeters, and Polytempo are compositional techniques that describe pulses which are desynchronous between two or more sequences of music. Digital systems permit the sequencing of notes to a near-infinite degree of resolution, permitting an exponential number of complex rhythmic attributes in the music. Exploring such techniques within existing popular music sequencing software and notations can be challenging to generally work with and notate effectively. Step sequencers provide a simple and effective interface for exploring any arbitrary division of time into an even number of steps, with such interfaces easily expressible on grid based music controllers. The paper therefore has two differing but related outputs. Firstly, to demonstrate a framework for working with multiple physical grid controllers forming a larger unified grid, and provide a consolidated set of tools for programming music instruments forit. Secondly, to demonstrate how such a system provides a low-entry threshold for exploring Polyrhytms, Polymeters and Polytempo relationships using desynchronised step sequencers. CCS Concepts: • Human-centered computing → User interface programming; • Applied computing → Sound and music computing. Author’s address: Samuel J. Hunt, Creative Technologies Laboratory, UWE Bristol, [email protected]. 2020. Manuscript submitted to ACM Manuscript submitted to ACM 1 2 Samuel Hunt Additional Key Words and Phrases: Polyrhythm, Polymeter, Polytempo, Grid Controllers ACM Reference Format: Samuel J. Hunt. 2020. Exploring Polyrhythms, Polymeters, and Polytempi with the Universal Grid Sequencer framework. 1, 1 (November 2020), 11 pages. -
Computer Music Products Guide 2010
Computer Music Products Guide 2010 Computer Music Products Guide 2010 V-STUDIO MIDI KEYBOARD CONTROLLERS AUDIO INTERFACES MICRO MONITORS Cakewalk is a registered trademark and SONAR, V-STUDIO 700, Active Controller Technology, Dimension Pro, Rapture and the Cakewalk logo are trademarks of Cakewalk, Inc. Roland, BOSS, COSM, EDIROL, SuperNATURAL, VariPhrase, V-LINK and V-Vocal are either registered trademarks or trademarks of Roland Corporation in the United States and/or other countries. Mac and Mac OS are trademarks of Apple Inc. ASIO and VST are trademarks of Steinberg Media Technologies AG. ReWire is a trademark of Propellerhead Software, AB. iZotope Radius copyright c 2005-2010 iZotope, Inc. Other trademarks mentioned are held by their respective owners. All specifications and appearances are subject to change without notice. All specifications and appearances are subject to change without notice. All trademarks are the property of their respective companies. MIDI INTERFACES MUSIC SOFTWARE www.cakewalk.com | (888) CAKEWALK | +1 (617) 423-9004 outside the US May. 2010 RAM-4594 GR-UPR-SS B1EC1 Made for Musicians By Musicians Cakewalk Computer Music Products These products are created by musicians who listen, understand, and respond to the needs of our customers, who include award-winning producers, engineers, composers, and musicians. Our mission is to inspire your creativity through the combination of superior sound quality, industry-leading technology, and unmatched ease of use. There are Cakewalk products that are right for you at every stage of your musical career and ability. Read on to learn more... V-STUDIO 04 MIDI INTERFACES 15 MICRO MONITORS 18 AUDIO INTERFACES 11 MIDI KEYBOARD CONTROLLERS 16 MUSIC SOFTWARE 19 visit us online at V-STUDIO www.cakewalk.com WDM VS-700R V-STUDIO I/O VS-700C V-STUDIO Console Windows® Windows® High-speed USB 2.0 audio interface that provides all the recording and routing The VS-700C Console offers broader ranging control and deeper editing and AUDIO AUDIO MIDI capabilities needed to handle any music production task. -
Music and Tone Sequencer
Music and Tone Sequencer Annie Zhang Boris Chan Cindy Wang Ryan Kim Cornell University Cornell University Cornell University Cornell University Ithaca, NY, USA Ithaca, NY, USA Ithaca, NY, USA Ithaca, NY, USA [email protected] [email protected] [email protected] [email protected] INTRODUCTION grid are set up such that the lower five rows represent The goal of this project is to design a music one full octave while the three remaining higher rows sequencer device that can be used to generate musical represent half an octave. By pressing any of the patterns and rhythms of varying tones and sounds. buttons of their choice, users can effectively create The device will be able to generate a musical patterns of buttons that correlated to rhythms of notes sequence whose notes and rhythm are determined by within a pentatonic scale. a pattern of buttons activated by the user; users can choose which notes to activate by interacting with a Our ultimate design goals consisted of developing an button pad present on the top of the device. The intuitive device that would allow individuals purpose of this project to twofold: firstly it is meant unfamiliar with music theory to still create music. We to help individuals experience music creation without aimed to develop a neat, fully functional prototype needing a background in music, and secondly it can that can correctly process button input, emit sounds, cultivate interaction and social bonding between and accept volume control. individuals by having them work together to generate music without much effort. For example, the device can be used to teach young children about the RELATED WORK fundamentals of chords and rhythm by having them The inspiration of our project stemmed from an see how buttons activate different sounds, which online pentatonic step sequencer [8]. -
Take Your Guitar Further
The VGA-3 V-Guitar Amplifier puts Roland’s most sought-after guitar and amp models in a compact digital amp at a very friendly price. This 50-watt brute uses COSM modeling to deliver a stunning range of electric and acoustic guitar models—plus unique GK effects—from any GK pickup-equipped guitar. There are also 11 programmable COSM amp models, 3-band EQ, and three independent effects processors that can be accessed using any standard electric guitar. TaTaTa k k k e e e Yo Yo Yoururur Guitar Guitar Guitar Further Further Further ● Rated Power Output 50 W ● Patches 10 (Recalled from Panel), 40 (Recalled from MIDI Foot Controller) ● Nominal Input Level (1 kHz) INPUT: -10 dBu, EXT IN: -10 dBu ● Speaker 30 cm (12 inches) x 1 ● Connectors Front: GK In, Input, Recording Out/Phones, Rear: EXT In, EXP Pedal, Foot SW, MIDI In ● Power Supply AC 117/230/240 V ● Power Consumption 55 W ● Dimensions 586 (W) x 260 (D) x 480 (H) mm / 23-1/8 (W) x 10-1/4 (D) x 18-15/16 (H) inches ● Weight 18.5 kg / 40 lbs. 13 oz. ● Accessory Owner's Manual * 0 dBu=0.775 Vrms ■ Roland’s Flagship Modeling Amplifier. The VGA-7 V-Guitar Amplifier is the most powerful and complete modeling amplifier in history. This technological marvel serves up a range of COSM amp sounds, onboard effects, and speaker cabinet simulations—plus models of different electric and acoustic guitars, pickups, and tunings using any steel-string guitar and an optional GK-2A Divided Pickup. -
Owner's Manual
Owner’s Manual For the following languages, a PDF version of the Owner’s Manual can be found on the CD-ROM. Deutsch, Français, Italiano, Español, Português, Nederlands What is MIDI? MIDI is an internationally recognized standard for exchanging performance information between electronic musical instruments and computers. For example, in the illustration below, a MIDI signal meaning “the ‘C’ key on the MIDI keyboard was pressed” passes through the A-49 and is received by the computer’s software sound module, and then the software sound module plays the note “C.” MIDI signal Information meaning “the ‘C’ key was pressed” “C” is played Software sound module “C” key is pressed In this way, MIDI is used to send performance information to other instruments; for example “the ‘C’ key was pressed with a certain amount of force,” “the instrument was changed to a violin sound,” “the volume was raised/lowered,” “the pitch was raised/lowered,” etc. In other words, MIDI is the “language of musical instruments.” MIDI signals are merely performance instructions, therefore a MIDI sound module, such as a software sound module, is required to produce sound. All software sound modules and DAW (Digital Audio Workstation) software support MIDI. MEMO DAW software is a term that refers to music production software. Note Do not connect the A-49 to the computer until the driver has been installed (p. 13). Before using this unit, carefully read the sections entitled:”USING THE UNIT SAFELY” (p. 3) and “IMPORTANT NOTES” (p. 4). These sections provide important information concerning the proper operation of the unit. -
MUSIC PRODUCTION GUIDE Official News Guide from Yamaha & Easy Sounds for Yamaha Music Production Instruments
MUSIC PRODUCTION GUIDE OFFICIAL NEWS GUIDE FROM YAMAHA & EASY SOUNDS FOR YAMAHA MUSIC PRODUCTION INSTRUMENTS 04|2014 SPECIAL EDITION Contents 40th Anniversary Yamaha Synthesizers 3 40 years Yamaha Synthesizers The history 4 40 years Yamaha Synthesizers Timeline 5 40th Anniversary Special Edition MOTIF XF White 23 40th Anniversary Box MOTIF XF 28 40th Anniversary discount coupons 30 40th Anniversary MX promotion plan 31 40TH 40th Anniversary app sales plan 32 ANNIVERSARY Sounds & Goodies 36 YAMAHA Imprint 41 SYNTHESIZERS 40 YEARS OF INSPIRATION YAMAHA CELEBRATES 40 YEARS IN SYNTHESIZER-DESIGN WITH BRANDNEW MOTIF XF IN A STUNNIG WHITE FINISH SARY PRE ER M V IU I M N N B A O X H T 0 4 G N I D U L C N I • FL1024M FLASH MEMORY Since 1974 Yamaha has set new benchmarks in the design of excellent synthesizers and has developed • USB FLASH MEMORY (4GB) innovative tools of creativity. The unique sounds of the legendary SY1, VL1 and DX7 have influenced a INCL. SOUND LIBRARIES: whole variety of musical styles. Yamaha‘s know-how, inspiring technique and the distinctive sounds of a - CHICK’S MARK V - CS-80 40-years-experience are featured in the new MOTIF XF series that is now available in a very stylish - ULTIMATE PIANO COLLECTION white finish. - VINTAGE SYNTHESIZER COLLECTION YAMAHASYNTHSEU YAMAHA.SYNTHESIZERS.EU YAMAHASYNTHESIZEREU EUROPE.YAMAHA.COM MUSIC PRODUCTION GUIDE 04|2014 40TH ANNIVERSARY YAMAHA SYNTHESIZERS In 1974 Yamaha produced its first portable Yamaha synthesizers and workstations were and still are analog synthesizer with the SY-1. The the first choice for professionals and amateurs in the multi- faceted music business. -
Scarlett 4I4 3Rd Gen User Guide.Indd
User Guide www.focusrite.com Version 1.0 TABLE OF CONTENTS OVERVIEW . 3 Introduction . 3 Features . 3 Box Contents . 4 System requirements . 4 GETTING STARTED . 5 Quick Start Tool . 5 Mac users only . 5 Windows only . 7 All users . 9 Manual Registration.............................................................9 Audio Setup in your DAW . 10 Loopback Inputs...............................................................11 Examples of Usage . 12 Connecting a microphone or instrument ...........................................12 Using Direct Monitoring.........................................................13 Connecting Scarlett 4i4 to loudspeakers ...........................................13 Creating an effects loop.........................................................15 Connecting Scarlett 4i4 to a DJ mixer . 16 HARDWARE FEATURES . 17 Front Panel.................................................................17 Back Panel .................................................................18 CHANNEL LISTINGS . 19 Performance Specifications . 19 Physical and Electrical Characteristics..........................................21 TROUBLESHOOTING . 22 COPYRIGHT AND LEGAL NOTICES . 22 2 OVERVIEW Introduction Thank you for purchasing this Third Generation Scarlett 4i4, one of the family of Focusrite professional computer audio interfaces incorporating high quality Focusrite analogue preamps. You now have a simple and compact solution for routing high quality audio to and from your computer and you will also be able to download some exciting -
Computer Mediated Music Production: a Study of Abstraction and Activity
Computer mediated music production: A study of abstraction and activity by Matthew Duignan A thesis for the degree of Doctor of Philosophy in Computer Science. Victoria University of Wellington 2008 Abstract Human Computer Interaction research has a unique challenge in under- standing the activity systems of creative professionals, and designing the user-interfaces to support their work. In these activities, the user is involved in the process of building and editing complex digital artefacts through a process of continued refinement, as is seen in computer aided architecture, design, animation, movie-making, 3D modelling, interactive media (such as shockwave-flash), as well as audio and music production. This thesis exam- ines the ways in which abstraction mechanisms present in music production systems interplay with producers’ activity through a collective case study of seventeen professional producers. From the basis of detailed observations and interviews we examine common abstractions provided by the ubiqui- tous multitrack-mixing metaphor and present design implications for future systems. ii Acknowledgements I would like to thank my supervisors Robert Biddle and James Noble for their endless hours of guidance and feedback during this process, and most of all for allowing me to choose such a fun project. Michael Norris and Lissa Meridan from the Victoria University music department were also invaluable for their comments and expertise. I would also like to thank Alan Blackwell for taking the time to discuss my work and provide valuable advice. I am indebted to all of my participants for the great deal of time they selflessly offered, and the deep insights they shared into their professional world. -
Comparing the Cost of Preamplifiers to Their Sonic Fidelity and Frequency Output
California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Spring 5-20-2016 Comparing the Cost of Preamplifiers ot Their Sonic Fidelity and Frequency Output Jackson O. Hunter California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes Part of the Audio Arts and Acoustics Commons Recommended Citation Hunter, Jackson O., "Comparing the Cost of Preamplifiers ot Their Sonic Fidelity and Frequency Output" (2016). Capstone Projects and Master's Theses. 548. https://digitalcommons.csumb.edu/caps_thes/548 This Capstone Project is brought to you for free and open access by Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. Unless otherwise indicated, this project was conducted as practicum not subject to IRB review but conducted in keeping with applicable regulatory guidance for training purposes. For more information, please contact [email protected]. Hunter 1 Jackson Hunter Professor Sammons MPA 475 20 May 2015 COMPARING THE COST OF PREAMPLIFIERS TO THEIR SONIC FIDELITY AND FREQUENCY OUTPUT More than ever, too many times, audio engineers get caught up in the hype of big name brands and large price tags. However, the popularity of a brand, as well as the cost of its gear does not always equate to quality hardware. The microphone preamplifier is a perfect example of this disparity between price tags and brand names and performance of the equipment. The goal of this paper is to make one second guess the intrinsic idea that things that cost more and have a solid brand reputation actually sound better. -
Audio Plug-Ins Guide Version 9.0 Legal Notices This Guide Is Copyrighted ©2010 by Avid Technology, Inc., (Hereafter “Avid”), with All Rights Reserved
Audio Plug-Ins Guide Version 9.0 Legal Notices This guide is copyrighted ©2010 by Avid Technology, Inc., (hereafter “Avid”), with all rights reserved. Under copyright laws, this guide may not be duplicated in whole or in part without the written consent of Avid. 003, 96 I/O, 96i I/O, 192 Digital I/O, 192 I/O, 888|24 I/O, 882|20 I/O, 1622 I/O, 24-Bit ADAT Bridge I/O, AudioSuite, Avid, Avid DNA, Avid Mojo, Avid Unity, Avid Unity ISIS, Avid Xpress, AVoption, Axiom, Beat Detective, Bomb Factory, Bruno, C|24, Command|8, Control|24, D-Command, D-Control, D-Fi, D-fx, D-Show, D-Verb, DAE, Digi 002, DigiBase, DigiDelivery, Digidesign, Digidesign Audio Engine, Digidesign Intelligent Noise Reduction, Digidesign TDM Bus, DigiDrive, DigiRack, DigiTest, DigiTranslator, DINR, DV Toolkit, EditPack, Eleven, EUCON, HD Core, HD Process, Hybrid, Impact, Interplay, LoFi, M-Audio, MachineControl, Maxim, Mbox, MediaComposer, MIDI I/O, MIX, MultiShell, Nitris, OMF, OMF Interchange, PRE, ProControl, Pro Tools M-Powered, Pro Tools, Pro Tools|HD, Pro Tools LE, QuickPunch, Recti-Fi, Reel Tape, Reso, Reverb One, ReVibe, RTAS, Sibelius, Smack!, SoundReplacer, Sound Designer II, Strike, Structure, SYNC HD, SYNC I/O, Synchronic, TL Aggro, TL AutoPan, TL Drum Rehab, TL Everyphase, TL Fauxlder, TL In Tune, TL MasterMeter, TL Metro, TL Space, TL Utilities, Transfuser, Trillium Lane Labs, Vari-Fi, Velvet, X-Form, and XMON are trademarks or registered trademarks of Avid Technology, Inc. Xpand! is Registered in the U.S. Patent and Trademark Office. All other trademarks are the property of their respective owners.