Separating the Components of a Mixture

Total Page:16

File Type:pdf, Size:1020Kb

Separating the Components of a Mixture Separating the Components of a Mixture Introduction: Mixtures are not unique to chemistry; we encounter them on a daily basis. The food and drinks we consume, the fuel we use in our vehicles, building materials, soil, air, and ordinary water are all mixtures. In fact, very few common materials in the world are pure. Any material made up of two or more substances that are not chemically combined is a mixture. It is not difficult to separate the components of a mixture if you take advantage of differences in physical properties of the components. 1. Sublimation. Some substances change directly from a solid to a gas when they are heated. The reverse process, when the vapor goes back to the solid phase without a liquid state in between, is called deposition. Some solids which sublime are iodine, caffeine, and paradichlorobenzene (mothballs). Dry ice sublimes also. 2 Extraction. This uses a solvent to selectively dissolve one component of the solid mixture. With this technique, a soluble substance can be separated from an insoluble substance. 3. Decantation. This separates a liquid from insoluble solid sediment by carefully pouring the liquid from the solid without disturbing the solid. 4. Filtration. This separates a solid from a liquid through the use of a porous material as a filter. Paper, charcoal, or sand can serve as a filter. These materials trap the solid but let the liquid pass through (see diagram in Procedure section). 5. Evaporation. This is the process of heating a mixture in order to remove a liquid that evaporates easily, leaving a dry residue. Purpose: 1. To separate the components of a mixture using physical methods. 2. To calculate the percent composition of a mixture. Procedure: The mixture that will be separated in this experiment contains three components: Naphthalene, C10H8 (does not dissolve in water; sublimes) common table salt, NaCl (soluble in water) sea sand, SiO2 (not soluble in water) Briefly, the process involves 1. Heating the mixture to sublime the naphthalene 2. Dissolving the table salt with water to extract it from the sand by filtration, and 3. Evaporating water to recover dry NaCl and dry sand. A flow-chart summarizes the sequence of steps that you will use. Identify each of the materials present after each step in the boxes. To begin: 1. Label a clean, dry 150-mL beaker with #1 and your initials. Obtain its mass to the nearest 0.01 g. Record this mass and all other masses on the data chart. 2. Obtain a small vial (small glass or plastic container with cap) containing the mixture to be separated and empty all of the mixture into beaker #1. 3. Record the mass of beaker #1 with the mixture. Sublimation: 4. Move all combustible materials away from your work area. Plan the next steps carefully. 5. Place a clean, dry evaporating dish on top of beaker #1 containing the mixture. Place the beaker and evaporating dish on a wire gauze with an iron ring and ring stand assembly as shown. Place ice in the evaporating dish, being careful not to get any water on the underside of the evaporating dish or inside the beaker. 6. Carefully heat the beaker with a Bunsen burner. Vapors will appear in the beaker and solid crystals should collect on the underside of the evaporating dish. CAUTION: NAPHTHALENE IS FLAMMABLE. BE SURE THAT THE FLAME IS KEPT LOW – DO NOT LET IT COME INTO CONTACT WITH VAPOR THAT ESCAPES FROM THE BEAKER. TURN OFF THE BURNER EACH TIME YOU REMOVE THE EVAPORATING DISH FOR SCRAPING. 7. After 5 min. of heating, turn off the Bunsen burner. Drain away any water from the evaporating dish. Collect the crystallized solid by scraping it off the dish into a piece of paper towel with a scoopula. We will discard the naphthalene. The edges of the evaporating dish might be hot – handle it with crucible tongs if necessary. 8. Stir the contents of the beaker with a glass rod. Add more ice to the evaporating dish and place it back on the beaker. Re-light the burner and continue to heat/scrape it as described above until no more solid collects on the underside of the dish. CONTINUE TO USE CAUTION WITH THE FLAME. 9. Let the beaker cool until you can hold it comfortably. Then obtain the mass of beaker #1 with contents. DO NOT DISCARD THE NAPHTHALENE IN THE SINK. THE TEACHER WILL TELL YOU WHERE TO PUT IT. Decantation and Filtration: 10. Add approximately 25 mL of deionized water to the solid in the beaker. Stir the mixture with a glass rod to thoroughly dissolve the salt. 11. Label a clean, dry 250-mL beaker with #2 and your initials. Obtain its mass. 12. Label a piece of filter paper with your initials, and fold it as shown. Obtain the mass of the filter paper. 13. Assemble the apparatus for filtration. Place the pipestem triangle across the iron ring to hold the funnel. Separate three edges of paper away from one edge to make a “cup” 14. Position empty beaker #2 under the funnel. Let the stem of the funnel touch the glass. 15. Decant most of the liquid from beaker #1 into beaker #2 (do not spill out any sand). Then transfer any remaining salt water/sand directly into the funnel. Use a small amount of water from your wash bottle to help transfer all of the residue from beaker #1 into the funnel. 16. When all of the liquid has passed through the filter paper, gently remove the paper from the funnel and place it in the drying oven overnight. You will obtain the mass of the sand and filter paper together after the paper is completely dry. Evaporation: 17. Obtain the mass of a clean, dry watch glass. 18. Place beaker #2 and its contents on wire gauze with an iron ring and ring stand assembly as shown. Begin to heat gently with a Bunsen burner. If the contents of the beaker begin to spatter, remove the burner for a few minutes. You may place a watch on top of the beaker to prevent spattering of the contents out of the beaker. 19. When all of the liquid is gone, allow the beaker to cool to room temperature. Obtain the mass of the beaker (and watch glass, if used) and the solid residue. 20. Clean up your lab area and wash your hands. Complete the analysis and questions. DATA: 1. Mass of beaker #1: __________ g 2. Mass of beaker #1 and original mixture: __________ g 3. Mass of cooled beaker #1 and residue after sublimation of naphthalene __________ g 4. Mass of beaker #2: __________ g 5. Mass of filter paper: __________ g 6. Mass of watch glass: __________ g 7. Mass of filter paper and dry sand: __________ g 8. Mass of beaker #2 and dry salt __________ g (including watch glass, if used) ANALYSIS: Show the calculations, even if they seem trivial; use unit labels, work neatly. 1. Initial mass of mixture, before separation: 2. Mass of naphthalene removed by sublimation: 3. Mass of sand recovered by filtration: 4. Mass of salt recovered by evaporation: 5. Express each of the components of the mixture in terms of its percent composition. A percentage is a calculation that expresses “part over whole”. Use the data you collected to determine what “part of the whole” each substance contributed. Naphthalene: Sand: Salt: If the sum of the percents is not 100%, explain. QUESTIONS: 1. From an 11.12-g sample containing sodium chloride, naphthalene, and sand, the following components were recovered: 3.64-g sodium chloride, 1.56-g naphthalene, and 5.92-g sand. Calculate the percentage of each substance in the sample. 2. A student started this experiment with a mixture weighing 2.30 g. After separating the components using the same procedure as you did here, a total of 2.35 g of material was recovered. Assume that all the massing and calculations were done correctly. What is probably causing the apparent increase in mass of the recovered material? 3. The mass of naphthalene in your sample could be determined either by difference (as in this experiment) or by directly weighing the amount of solid scraped off of the evaporating dish. Which method do you think would provide more reliable results? Explain your answer. 4. Study the diagram and chart on pg. 713 of your textbook. Use it to explain how crude oil is separated (“refined”) into simpler components. Does fractional distillation involve physical changes or chemical changes? CONCLUSION: Summarize in a well-written paragraph (3-5 sentences) how your results support the Law of Conservation of Matter. .
Recommended publications
  • Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
    71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient.
    [Show full text]
  • Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture
    Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture E. Hawlicka* Institute of Applied Radiation Chemistry, Technical University, Wroblewskiego 15, 93-590, Lodz, Poland Z. Naturforsch. 41 a, 939-943 (1986); received April 25, 1986 The self-diffusion coefficients of Na+, C l- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 • 10-4— 1 • 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl - and I “ ions in water-methanol mixtures has been found. In spite of the great interest in the porperties of aqueous solution with a Nal(Tl) scintillation crystal water-organic solvent electrolyte solutions, data on of the well-type (2 x 2"). the ionic mobilities in such systems are scarce. For the self-diffusion measurements the open-end Usually the ionic mobility is calculated from the capillary method was used. The details of the equivalent conductance and the transference num­ experimental procedure have been described in [6], ber. Ionic transference numbers have been reported The labelling of the sodium ions with 22Na or for water and 17 organic solvents [1], but only for a 24Na and the iodide ions with i25I or 1311, respective­ few water-organic solvents mixtures. ly, did not make any difference in the results. Similar information can be obtained from the ionic self-diffusion coefficients, which have been reported for a few water-organic solvent systems Results [2-5], The aim of the present work was to determine the All self-diffusion experiments have been carried self-diffusion coefficients of sodium, chloride and out at 25.0 ± 0.05 °C.
    [Show full text]
  • Salt Effect on Vapor-Liquid Equilibria for Acetone-Water System'
    SALT EFFECT ON VAPOR-LIQUID EQUILIBRIA FOR ACETONE-WATER SYSTEM' E1ZO SADA, TOSHIO OHNO** AND SHIGEHARU KITO Department of Chemical Engineering, Nagoya University, Nagoya, Japan Vapor-liquid equilibrium data of acetone-water system saturated with sodium chloride, potassium chloride, sodium nitrate, and calcium chloride dihydrate are determined under atmospheric pressure. These vapor-liquid equilibrium data are correlated by a method which gives approximately the behavior of salt in the liquid. The standard deviation of correlated results is 2.32%. To carry out this correlation, the vapor pressures of aqueous solutions saturated with salts are also determined. Investigations concerned with the effect of salt the portion between Cx and Hj is brought to the addition on the vapor-liquid equilibria of binary- vapor pressure of sample solution. Whenthe system systems are of theoretical and industrial importance, attains equilibrium (about one hour is needed), and not a little knowledge of vapor-liquid equilibrium the heights of Hl5 H2, and H3 aremeasured, and the data in this field is already available2}. However, vapor pressure is calculated from the following most investigations are limited to presentation of equation. P '---(Hi-H,W+(Hg-H,W experimental data with no attempt to develop a cor- LO -% r relation. Among these, only a few correlations />*" (1) are proposed, for example, by Johnson and Furter5), As the density of sample solution is usually an order and Hashitani and Hirata3). In this paper, the vapor-liquid equilibrium data of magnitude lower than for mercury, it does not decrease the accuracy of measurementto use the for the acetone-water system saturated with each density of pure water at measuring temperature in of four kinds of salt, i.e.
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • WFOOT General Assembly
    Headquarters: World Via de Pratello, 8 Federation of Bologne (Italy) Ozone WEB: www.wfoot.org Therapy Email: [email protected] Guangzhou, June 12th, 2017 Some medical ozone associations are promoting the use of ozonated saline solution as a method classifiable as Ozone Therapy. This is documented also by the “Second edition of Madrid Declaration on Ozone Therapy” edited by ISCO3 (International Scientific Committee on Ozone Therapy) that included this technique in their training courses. The World Federation of Ozone Therapy – WFOT, very worried about this fact, has made a deep study through its scientific advisory committee that concludes: - Ozonated saline following the recommendation from the above related document, introduces in the body a very low amount of ozone dissolved in certain quantity of saline solution, compared with systemic indirect endovenous ozone therapy (SIEVOT), also known as major autohemotherapy. This small quantity doubtfully would induce any significant biological response, through the generation of ROS and LOPs. We must say that it is not an Ozone Therapy technique based on the ozone chemistry well documented by the German, Cuban and Italian schools, in which ozone is the only molecule that interacts with the body fluids. - The ozonation of saline solution (0,9% NaCl) induces the generation of dangerous oxidized chlorine derivatives, not present in other techniques of medical ozone administration. Ozonated saline solutions showed to induce mutagenicity and toxicity in clinical reports. Ozonated saline solutions lacks of any kind of approved preclinical studies to support its safety, as ozone has, which were developed in Cuba and following the recommendations of the World Health Organization – WHO.
    [Show full text]
  • Potassium Chloride 1311
    ASHP INJECTABLE DRUG INFORMATION Potassium CHLORIDE 1311 Potassium Chloride AHFS 40:12 Products chloride injection thoroughly with the infusion solution before administration. The usual maximum concentration is 40 mEq/L. Potassium chloride is available as concentrated solutions of 1.5 and Extravasation should be avoided.1(5/06) 4 2 mEq/mL in 10-, 20-, 30-, and 40-mEq sizes in water for injection in ampuls, vials, and syringes. It is also available in a 30-mL (60-mEq) Great care is required when adding potassium chloride to multiple-dose vial containing methylparaben 0.05% and propyl- infusion solutions, whether in flexible plastic containers or paraben 0.005% as preservatives and 250-mL pharmacy bulk pack- in rigid bottles. Adding potassium chloride to running infu- ages. The pH may have been adjusted with hydrochloric acid and sion solutions hanging in the use position, especially in flex- if necessary potassium hydroxide during manufacture. The concen- ible containers, has resulted in the pooling of potassium chlo- trated solutions must be diluted for use.1(5/06) ride and a resultant high-concentration bolus of the drug being administered to patients, with serious and even fatal conse- Potassium chloride is also available premixed in infusion 4 quences. Attempts to mix adequately the potassium chloride solutions in concentrations of 10, 20, 30, and 40 mEq/L. in flexible containers by squeezing the container in the hanging pH position were unsuccessful. It is recommended that drugs be The pH is usually near 4.6 with a range from 4 to 8.1(5/06) 17 admixed with solutions in flexible containers when positioned with the injection arm of the container uppermost.
    [Show full text]
  • Battle of the Acids Weak Acids and Bases SCIENTIFIC
    Battle of the Acids Weak Acids and Bases SCIENTIFIC Introduction Not all acids are created equal. This demonstration compares the “frothing and foaming” activity of different acids with calcium carbonate and examines their behavior in the presence of their conjugate bases to distinguish strong versus weak acids. The use of a “rainbow acid” universal indicator produces a rainbow spectrum of color changes as the mixtures react. Concepts • Strong acid • Weak acid • Conjugate base • pH Materials (for each demonstration) Acetic acid, CH3COOH, 1 M, 400 mL Water, distilled or deionized Calcium carbonate, CaCO3, 40 g Demonstration tray, large Hydrochloric acid, HCl, 1 M, 400 mL Graduated cylinder, 250-mL “Rainbow acid” universal indicator, 5 mL Hydrometer cylinders, 600-mL, 4 (includes accompanying color chart) Pipet, Beral-type Sodium acetate, NaCH3CO2, 16 g Weighing dishes or small beakers, 6 Sodium chloride, NaCl, 12 g Safety Precautions Hydrochloric acid and acetic acid solutions are toxic and corrosive. Avoid contact with skin and eyes. “Rainbow-acid” universal indicator solution is an alcohol-based solution and is flammable. Avoid contact with flames or other ignition sources. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Preparation To save time in the presentation, pre-measure the amounts of solids needed for the demonstration. Weigh out 12 g of sodium chloride, 16 g of sodium acetate, and 4 × 10-g samples of calcium carbonate in separate, labeled weighing dishes or small beakers. Procedure 1. Obtain 4 large hydrometer cylinders or tall-form beakers and place them on a large demonstration tray.
    [Show full text]
  • Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions
    agronomy Article Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions Sandra Balbino 1, Maja Repaji´c 1,* , Tea Solari´c 1, Draženka Dite Hunjek 2, Dubravka Škevin 1, Klara Kralji´c 1, Marko Obranovi´c 1 and Branka Levaj 1 1 Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; [email protected] (S.B.); [email protected] (T.S.); [email protected] (D.Š.); [email protected] (K.K.); [email protected] (M.O.); [email protected] (B.L.) 2 Intersnack Adria Ltd., Pepe Bukaˇca11, 43284 Hercegovac, Croatia; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 10 November 2020; Published: 13 November 2020 Abstract: This work examined the influence of cultivar, anti-browning treatment, package atmosphere and storage duration on the oil uptake and polycyclic aromatic hydrocarbons (PAH) levels in fried fresh-cut potato (FCP). Birgit and Lady Claire potato slices were pre-treated with sodium chloride solution (1%) and sodium ascorbate solution (2%), packaged in vacuum and modified atmosphere and stored at 10 ◦C/8 days. Oil uptake was significantly higher in Birgit FCP and was not affected by minimal processing. HPLC analysis/fluorescence detection was able to identify a total of 14 PAH. 1 Benzo(a)pyrene and SPAH4 levels (0.62 and 1.36 µg kg− , respectively) were below the EU limits in all fried FCP samples. Majority of examined light and heavy PAH were higher in Lady Claire, while naphthalene, fluorene and pyrene were decreased by vacuum packaging.
    [Show full text]
  • Solvent Extraction of Sodium Chloride from Codfish
    Solvent extraction of sodium chloride from codfish (Gadus morhua) salting processing wastewater Vincenza Ferraro a,b, Isabel B. Cruz a,b, Ruben Ferreira Jorge b, Manuela E. Pintado a, Paula M.L. Castro a,⁎ a CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal b WeDoTech-Companhia de Ideias e Tecnologias, Lda./CiDEB, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal abstract Codfish is worldwide mostly consumed salt-cured due to the highly appreciated sensory characteristics promoted by salt. During the salting process huge amounts of salted wastewater are generated – approximately 22% w/w of the codfish – carrying ca. 250 g/L of sodium chloride and ca. 10 g/L of organic compounds, namely proteins and free amino acids. In this study, the salt load of wastewater generated during the salting process of codfish (Gadus morhua) was successfully reduced by ethanol extraction. The effects of time, sample:ethanol ratio, pH and temperature on salt extraction by ethanol addition were assessed by a one- Keywords: 2 Salting wastewater variable-at-a-time approach and then by performing a 3 fractional factorial design. The effects of pH were Codfish also assessed in absence of ethanol. The maximum amount of salt precipitated in the wastewater was ca. 33%, Free amino acids at a wastewater-ethanol ratio 1:1 (v/v), at a temperature of 0 °C and after 30 min. Proteins and free amino Protein acids present in the wastewater significantly limited salt precipitation; in a blank solution (salt in water at ca.
    [Show full text]
  • Combustion Inhibition of Aluminum–Methane–Air Flames by Fine Nacl Particles
    energies Article Combustion Inhibition of Aluminum–Methane–Air Flames by Fine NaCl Particles Wu Xu and Yong Jiang * State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China; [email protected] * Correspondence: [email protected]; Tel.: +86-551-63607827 Received: 11 October 2018; Accepted: 12 November 2018; Published: 14 November 2018 Abstract: The effect of NaCl as an extinguishing agent on metal dust fires require further exploration. This paper reports the results of an experimental study on the performance of micron-sized NaCl powders on hybrid aluminum–methane–air flames. NaCl particles with sub-10 µm sizes were newly fabricated via a simple solution/anti-solvent method. The combustion characteristics of aluminum combustion in a methane-air flame were investigated prior to the particle inhibition study to verify the critical aluminum concentration that enables conical aluminum-powder flame formation. To study the inhibition effectiveness, the laminar burning velocity was measured for the established aluminum–methane–air flames with the added NaCl using a modified nozzle burner over a range of dust concentrations. The results were also compared to flames with quartz sand and SiC particles. It is shown that the inhibition performance of NaCl considerably outperformed the sand and SiC particles by more rapidly decreasing the burning velocity. The improved performance can be attributed to contributions from both dilution and thermal effects. In addition, the dynamic behavior of the NaCl particles in the laminar aluminum–methane–air flame was investigated based on experimental observations. The experimental data provided quantified the capabilities of NaCl for metal fire suppression on a fundamental level.
    [Show full text]
  • The Effect of Gamma Radiation on the Conductivity of Sodium Chloride Michael Claudewell Jon Carlson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 The effect of gamma radiation on the conductivity of sodium chloride Michael Claudewell Jon Carlson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Engineering Commons Recommended Citation Carlson, Michael Claudewell Jon, "The effect of gamma radiation on the conductivity of sodium chloride " (1968). Retrospective Theses and Dissertations. 3723. https://lib.dr.iastate.edu/rtd/3723 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiihned exactly as received 69-4221 CARLSON, Michael Claudewell Jon, 1939- THE EFFECT OF GAMMA RADIATION ON THE CONDUCTIVITY OF SODIUM CHLORIDE. Iowa State University, Ph.D., 1968 Engineering, nuclear University Microfilms, Inc., Ann Arbor, Michigan THE SFFECT OF GAMMA RADIATION ON THE CONDUCTIVITY OF SODIUM CHLORIDE by Michael Claudewell Jon Carlson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Nuclear Engineering Approved; Signature was redacted for privacy. Signature was redacted for privacy.
    [Show full text]
  • Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L
    Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-69001 September 2017 Contract No. DE-AC36-08GO28308 Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. Prepared under Task No. VTOP.10335.04.01.03 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5400-69001 Golden, CO 80401 September 2017 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]