Arithmetic Geometry in Characteristic 푝 Renee Bell, Julia Hartmann, Valentijn Karemaker, Padmavathi Srinivasan, and Isabel Vogt

Total Page:16

File Type:pdf, Size:1020Kb

Arithmetic Geometry in Characteristic 푝 Renee Bell, Julia Hartmann, Valentijn Karemaker, Padmavathi Srinivasan, and Isabel Vogt Thinking Positive: Arithmetic Geometry in Characteristic 푝 Renee Bell, Julia Hartmann, Valentijn Karemaker, Padmavathi Srinivasan, and Isabel Vogt of prime characteristic 푝, like finite fields. Decades after The authors of this piece are organizers of the AMS these ideas were formalized, characteristic 푝 arithmetic ge- 2019 Mathematics Research Communities summer ometry is rapidly expanding to include work in the vibrant conference on Explicit Methods in Arithmetic young fields of arithmetic dynamics and derived algebraic Geometry in Characteristic p, one of three topical geometry. research conferences offered this year that are focused Fields of positive characteristic 푝 have a fundamentally on collaborative research and professional distinct flavor from the classical setting of fields of charac- development for early career mathematicians. teristic 0. In addition, having to let go of the archimedean framework requires a radically different geometric intuition. Additional information can be found at 푝 http://www.ams.org/programs/research- Working in characteristic therefore comes with additional challenges, but there are also additional tools and struc- communities/2019MRC-Explicit. ture that can be exploited, which have led to remarkable Applications are open until February 15, 2019. results. In some instances these results even carry over to 0 Arithmetic geometry arose as a beautiful and powerful the- solve open problems in characteristic . ory unifying geometry and number theory, formalizing striking analogies between them in a way that allowed Historical overview. While number theorists had been tools, results, and intuition of each to be transported to studying the rational numbers and other number fields us- the other—a notable example of this is the proof of the ing the Riemann and Dedekind zeta functions, E. Artin in centuries-old problem, Fermat’s Last Theorem. This the- his 1921 thesis [1] first proposed an analogous theory of ory provides a geometric viewpoint of objects over fields zeta functions for curves over finite fields. Hasse extended this to prove the Riemann hypothesis for elliptic curves Renee Bell is a Hans Rademacher Instructor at the University of Pennsylvania. over finite fields. Their work further sparked the develop- Her email address is [email protected]. ment of the theory of function fields, as well as the theory Julia Hartmann is a professor at the University of Pennsylvania. Her email of algebraic varieties, by several mathematicians, includ- address is [email protected]. ing Weil. In the 1940’s, Weil published a book [11] on Valentijn Karemaker is a postdoctoral research fellow at the University of Penn- the foundations of algebraic geometry in characteristic 푝, sylvania. Her email address is [email protected]. and subsequently proved the Riemann hypothesis for func- Padmavathi Srinivasan is a Hale Visiting Assistant Professor at the Georgia tion fields over finite fields [12]. Moreover, in 1949, Weil Institute of Technology. Her email address is padmavathi.srinivasan @math.gatech.edu. proposed conjectures on the behavior of zeta functions of Isabel Vogt is a Massachusetts Institute of Technology graduate student currently varieties over finite fields—including the Riemann visiting Stanford University. Her email address is [email protected]. hypothesis—which came to be known as the Weil conjec- For permission to reprint this article, please contact: tures [13]. The breakthrough which enabled Grothendieck, [email protected]. DOI: https://doi.org/10.1090/noti1804 FEBRUARY 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 239 M. Artin, and Verdier to prove all but one of the Weil con- behavior of ranks and other fundamental invariants of el- jectures in 1964 [5] was their development of ℓ-adic coho- liptic curves. mology. Building on this, the Riemann hypothesis was eventually proven in two different ways by Deligne ([3, 1974], [4, 1980]). For more historical details, see e.g. [8]. Example 2: Automorphisms. A broad theme in mathemat- ics is that one should study the symmetries (i.e. automor- Weil conjectures and counting points. The zeta function phisms) of an object alongside the object itself. In the sim- 푍푋(푇) of an algebraic variety 푋 over 픽푞 encompasses in- plest case of an algebraic curve over ℂ, the automorphism formation about point counts over all finite extensions of group varies by the topological type: it is infinite for curves 픽푞: of genus 푔 = 0 or 1, but once 푔 ≥ 2, Hurwitz famously 84(푔 − 1) 푇푛 proved that its order is at most . In character- 푍푋(푇) = exp ( ∑ #푋(픽푞푛 ) ) . istic 푝, an algebraic curve could have additional symme- 푛 푛≥0 tries! For example, the projective plane curve 푥푝+1 +푦푧푝 + 푝 8 The Weil conjectures predict that the power series 푍푋(푇) 푧푦 over 픽푝2 has genus 푝(푝 − 1)/2, but 푂(푝 ) symme- is a rational function, whose zeros and poles can be de- tries. These symmetries arise in analogy with the fact that scribed in terms of natural group actions on the associated the unitary group PGU3(ℂ) preserves the Hermitian form 푋 = ℙ1 푄(푥, 푦, 푧) = 푥 ̄푥+ 푦 ̄푧+ 푧 ̄푦, and so acts on 푄 = 0. Re- étale cohomology groups. For example, when 픽푞 , 1 푛 #ℙ (픽 푛 ) = 푞 + 1 placing complex conjugation with the Frobenius involu- direct calculation gives 푞 , and 푝 tion 푥 ↦ ̄푥= 푥 (special to characteristic 푝) of 픽푝2 over 1 픽푝 gives rise to an action of PGU3(픽푝2 ) on this curve. 푍ℙ1 (푇) = . (1 − 푞푇)(1 − 푇) Example 3: Fundamental groups. An important objective of mathematics is to classify spaces; a natural approach to In 1954 Lang and Weil [7] proved a weaker version of this is introducing and comparing algebraic invariants as- the Weil Conjectures: if 푋 has 푑 irreducible components sociated to a space. One important example of such an of maximal dimension 푟, then invariant is the fundamental group, which captures infor- 푛 푟 푟−1/2 #푋(픽푞푛 ) ∼ 푑(푞 ) + 푂(푞 ), mation about the geometry of a space and its maps to other spaces. For a variety 푋 over ℂ, the topological fundamen- as 푛 goes to infinity. These Lang–Weil estimates are useful tal group 휋1(푋) has a description in terms of loops on in both directions: information either about point counts 1 푋. In particular, the line 픸 has trivial 휋1, since it’s con- or about the parameters 푟 and 푑 can be traded for the ℂ tractible. Using an equivalent description of 휋1, this says other. This technique is particularly striking in combina- 1 that 픸 has no nontrivial unramified covers. The same tion with the technique of spreading out from characteris- ℂ is true when we replace ℂ with any other characteristic 0 tic 0 to characteristic 푝: counting points on a specializa- field. In characteristic 푝, the theory of étale covers gives tion to characteristic 푝 can give information about dimen- a direct analog 휋ét of the topological fundamental group. sion and irreducibility in characteristic 0! 1 Grothendieck proved that the prime-to-푝 part of 휋ét is the This idea was used in recent work of Browning–Vishe 1 same as that of 휋 of an analogous curve over ℂ [6]. How- [2], building on an idea of Ellenberg–Venkatesh, to show 1 ever, the 푝-part of 휋ét detects that the theory of covers is that certain spaces parameterizing rational curves on hy- 1 much richer in this setting. For example, over a character- persurfaces over ℂ are irreducible of the expected dimen- istic 푝 ground field, 휋ét(픸1) is far from trivial; in fact, its sion. This is a beautiful illustration of the synergy between 1 cardinality is huge and depends on the ground field. It characteristic 0 and characteristic 푝 algebraic geometry. ét 1 is even conjectured that 휋1 (픸푘) determines the ground 푘 Characteristic 푝 phenomena. field when is algebraically closed. Example 1: Elliptic curves of unbounded rank. Another no- Mathematics research communities. Arithmetic geome- table application of these modern tools is an explicit ex- try in characteristic 푝 lends itself to a rich and varied col- ample, due to Ulmer [10], of a family of elliptic curves lection of accessible problems, in topics such as isogeny of unbounded rank defined over a function field over afi- classes of abelian varieties over finite fields, Galois cov- nite field. The construction makes clever use of the known ers of curves and lifting problems, and arithmetic dynam- cases of the Tate conjecture [9] over finite fields. The exis- ics. Many of these problems are existential, and can be tence of such a family of elliptic curves over number fields attacked by an explicit or computational approach. Signif- is a topic of heated debate amongst number theorists to- icant progress in this setting has been made in the last year day! Numerous heuristics have been developed about the alone, due to both recent theoretical technical innovations 240 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 2 and to recent computational advances that have aided ex- perimentation. Relatedly, there are new approaches to ex- plicitly constructing examples exhibiting certain phenom- ena. We invite early-career mathematicians from a wide range of backgrounds to continue this story at our upcoming MRC, “Explicit Methods in Arithmetic Geometry in Char- acteristic 푝.” References [1] E. Artin. Quadratische Körper im Gebiete der höheren Kongruenzen. I, II. Math. Z., 19(1):153–246, 1924. [2] Tim Browning and Pankaj Vishe. Rational curves on smooth hypersurfaces of low degree. Algebra Number The- ory, 11(7):1657–1675, 2017. [3] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307, 1974. [4] Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137–252, 1980.
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Field Theory Pete L. Clark
    Field Theory Pete L. Clark Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes. Contents About These Notes 7 Some Conventions 9 Chapter 1. Introduction to Fields 11 Chapter 2. Some Examples of Fields 13 1. Examples From Undergraduate Mathematics 13 2. Fields of Fractions 14 3. Fields of Functions 17 4. Completion 18 Chapter 3. Field Extensions 23 1. Introduction 23 2. Some Impossible Constructions 26 3. Subfields of Algebraic Numbers 27 4. Distinguished Classes 29 Chapter 4. Normal Extensions 31 1. Algebraically closed fields 31 2. Existence of algebraic closures 32 3. The Magic Mapping Theorem 35 4. Conjugates 36 5. Splitting Fields 37 6. Normal Extensions 37 7. The Extension Theorem 40 8. Isaacs' Theorem 40 Chapter 5. Separable Algebraic Extensions 41 1. Separable Polynomials 41 2. Separable Algebraic Field Extensions 44 3. Purely Inseparable Extensions 46 4. Structural Results on Algebraic Extensions 47 Chapter 6. Norms, Traces and Discriminants 51 1. Dedekind's Lemma on Linear Independence of Characters 51 2. The Characteristic Polynomial, the Trace and the Norm 51 3. The Trace Form and the Discriminant 54 Chapter 7. The Primitive Element Theorem 57 1. The Alon-Tarsi Lemma 57 2. The Primitive Element Theorem and its Corollary 57 3 4 CONTENTS Chapter 8. Galois Extensions 61 1. Introduction 61 2. Finite Galois Extensions 63 3. An Abstract Galois Correspondence 65 4. The Finite Galois Correspondence 68 5. The Normal Basis Theorem 70 6. Hilbert's Theorem 90 72 7. Infinite Algebraic Galois Theory 74 8. A Characterization of Normal Extensions 75 Chapter 9.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • O Modular Forms As Clues to the Emergence of Spacetime in String
    PHYSICS ::::owan, C., Keehan, S., et al. (2007). Health spending Modular Forms as Clues to the Emergence of Spacetime in String 1anges obscure part D's impact. Health Affairs, 26, Theory Nathan Vander Werf .. , Ayanian, J.Z., Schwabe, A., & Krischer, J.P. Abstract .nd race on early detection of cancer. Journal ofth e 409-1419. In order to be consistent as a quantum theory, string theory requires our universe to have extra dimensions. The extra dimensions form a particu­ lar type of geometry, called Calabi-Yau manifolds. A fundamental open ions ofNursi ng in the Community: Community question in string theory over the past two decades has been the problem ;, MO: Mosby. of establishing a direct relation between the physics on the worldsheet and the structure of spacetime. The strategy used in our work is to use h year because of lack of insurance. British Medical methods from arithmetic geometry to find a link between the geome­ try of spacetime and the physical theory on the string worldsheet . The approach involves identifying modular forms that arise from the Omega Fact Finder: Economic motives with modular forms derived from the underlying conformal field letrieved November 20, 2008 from: theory. The aim of this article is to first give a motivation and expla­ nation of string theory to a general audience. Next, we briefly provide some of the mathematics needed up to modular forms, so that one has es. (2007). National Center for Health the tools to find a string theoretic interpretation of modular forms de­ : in the Health ofAmericans. Publication rived from K3 surfaces of Brieskorm-Pham type.
    [Show full text]
  • Number Theory
    “mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87 4 Number Theory Number theory is the study of the integers. Why anyone would want to study the integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . Which one don’t you understand? Sec- ond, what practical value is there in it? The mathematician G. H. Hardy expressed pleasure in its impracticality when he wrote: [Number theorists] may be justified in rejoicing that there is one sci- ence, at any rate, and that their own, whose very remoteness from or- dinary human activities should keep it gentle and clean. Hardy was specially concerned that number theory not be used in warfare; he was a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory underlies modern cryptography, which is what makes secure online communication possible. Secure communication is of course crucial in war—which may leave poor Hardy spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms. Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in Chapters 2 and 3. Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set of integers, Z. 4.1 Divisibility The nature of number theory emerges as soon as we consider the divides relation a divides b iff ak b for some k: D The notation, a b, is an abbreviation for “a divides b.” If a b, then we also j j say that b is a multiple of a.
    [Show full text]
  • Algebraic Geometry Michael Stoll
    Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Geometry on Grassmannians and Applications to Splitting Bundles and Smoothing Cycles
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. STEVEN L. KLEIMAN Geometry on grassmannians and applications to splitting bundles and smoothing cycles Publications mathématiques de l’I.H.É.S., tome 36 (1969), p. 281-297. <http://www.numdam.org/item?id=PMIHES_1969__36__281_0> © Publications mathématiques de l’I.H.É.S., 1969, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://www. ihes.fr/IHES/Publications/Publications.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES AND SMOOTHING CYCLES by STEVEN L. KLEIMAN (1) INTRODUCTION Let k be an algebraically closed field, V a smooth ^-dimensional subscheme of projective space over A:, and consider the following problems: Problem 1 (splitting bundles). — Given a (vector) bundle G on V, find a monoidal transformation f \ V'->V with smooth center CT such thatyG contains a line bundle P. Problem 2 (smoothing cycles). — Given a cycle Z on V, deform Z by rational equivalence into the difference Z^ — Zg of two effective cycles whose prime components are all smooth. Strengthened form. — Given any finite number of irreducible subschemes V, of V, choose a (resp. Z^, Zg) such that for all i, the intersection V^n a (resp.
    [Show full text]
  • FROM HARMONIC ANALYSIS to ARITHMETIC COMBINATORICS: a BRIEF SURVEY the Purpose of This Note Is to Showcase a Certain Line Of
    FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS: A BRIEF SURVEY IZABELLA ÃLABA The purpose of this note is to showcase a certain line of research that connects harmonic analysis, speci¯cally restriction theory, to other areas of mathematics such as PDE, geometric measure theory, combinatorics, and number theory. There are many excellent in-depth presentations of the vari- ous areas of research that we will discuss; see e.g., the references below. The emphasis here will be on highlighting the connections between these areas. Our starting point will be restriction theory in harmonic analysis on Eu- clidean spaces. The main theme of restriction theory, in this context, is the connection between the decay at in¯nity of the Fourier transforms of singu- lar measures and the geometric properties of their support, including (but not necessarily limited to) curvature and dimensionality. For example, the Fourier transform of a measure supported on a hypersurface in Rd need not, in general, belong to any Lp with p < 1, but there are positive results if the hypersurface in question is curved. A classic example is the restriction theory for the sphere, where a conjecture due to E. M. Stein asserts that the Fourier transform maps L1(Sd¡1) to Lq(Rd) for all q > 2d=(d¡1). This has been proved in dimension 2 (Fe®erman-Stein, 1970), but remains open oth- erwise, despite the impressive and often groundbreaking work of Bourgain, Wol®, Tao, Christ, and others. We recommend [8] for a thorough survey of restriction theory for the sphere and other curved hypersurfaces. Restriction-type estimates have been immensely useful in PDE theory; in fact, much of the interest in the subject stems from PDE applications.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • From Arithmetic to Algebra
    From arithmetic to algebra Slightly edited version of a presentation at the University of Oregon, Eugene, OR February 20, 2009 H. Wu Why can’t our students achieve introductory algebra? This presentation specifically addresses only introductory alge- bra, which refers roughly to what is called Algebra I in the usual curriculum. Its main focus is on all students’ access to the truly basic part of algebra that an average citizen needs in the high- tech age. The content of the traditional Algebra II course is on the whole more technical and is designed for future STEM students. In place of Algebra II, future non-STEM would benefit more from a mathematics-culture course devoted, for example, to an understanding of probability and data, recently solved famous problems in mathematics, and history of mathematics. At least three reasons for students’ failure: (A) Arithmetic is about computation of specific numbers. Algebra is about what is true in general for all numbers, all whole numbers, all integers, etc. Going from the specific to the general is a giant conceptual leap. Students are not prepared by our curriculum for this leap. (B) They don’t get the foundational skills needed for algebra. (C) They are taught incorrect mathematics in algebra classes. Garbage in, garbage out. These are not independent statements. They are inter-related. Consider (A) and (B): The K–3 school math curriculum is mainly exploratory, and will be ignored in this presentation for simplicity. Grades 5–7 directly prepare students for algebra. Will focus on these grades. Here, abstract mathematics appears in the form of fractions, geometry, and especially negative fractions.
    [Show full text]
  • Topics in Complex Analytic Geometry
    version: February 24, 2012 (revised and corrected) Topics in Complex Analytic Geometry by Janusz Adamus Lecture Notes PART II Department of Mathematics The University of Western Ontario c Copyright by Janusz Adamus (2007-2012) 2 Janusz Adamus Contents 1 Analytic tensor product and fibre product of analytic spaces 5 2 Rank and fibre dimension of analytic mappings 8 3 Vertical components and effective openness criterion 17 4 Flatness in complex analytic geometry 24 5 Auslander-type effective flatness criterion 31 This document was typeset using AMS-LATEX. Topics in Complex Analytic Geometry - Math 9607/9608 3 References [I] J. Adamus, Complex analytic geometry, Lecture notes Part I (2008). [A1] J. Adamus, Natural bound in Kwieci´nski'scriterion for flatness, Proc. Amer. Math. Soc. 130, No.11 (2002), 3165{3170. [A2] J. Adamus, Vertical components in fibre powers of analytic spaces, J. Algebra 272 (2004), no. 1, 394{403. [A3] J. Adamus, Vertical components and flatness of Nash mappings, J. Pure Appl. Algebra 193 (2004), 1{9. [A4] J. Adamus, Flatness testing and torsion freeness of analytic tensor powers, J. Algebra 289 (2005), no. 1, 148{160. [ABM1] J. Adamus, E. Bierstone, P. D. Milman, Uniform linear bound in Chevalley's lemma, Canad. J. Math. 60 (2008), no.4, 721{733. [ABM2] J. Adamus, E. Bierstone, P. D. Milman, Geometric Auslander criterion for flatness, to appear in Amer. J. Math. [ABM3] J. Adamus, E. Bierstone, P. D. Milman, Geometric Auslander criterion for openness of an algebraic morphism, preprint (arXiv:1006.1872v1). [Au] M. Auslander, Modules over unramified regular local rings, Illinois J.
    [Show full text]