SE 015 465 AUTHOR TITLE the Content of Arithmetic Included in A

Total Page:16

File Type:pdf, Size:1020Kb

SE 015 465 AUTHOR TITLE the Content of Arithmetic Included in A DOCUMENT' RESUME ED 070 656 24 SE 015 465 AUTHOR Harvey, John G. TITLE The Content of Arithmetic Included in a Modern Elementary Mathematics Program. INSTITUTION Wisconsin Univ., Madison. Research and Development Center for Cognitive Learning, SPONS AGENCY National Center for Educational Research and Development (DHEW/OE), Washington, D.C. BUREAU NO BR-5-0216 PUB DATE Oct 71 CONTRACT OEC-5-10-154 NOTE 45p.; Working Paper No. 79 EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS *Arithmetic; *Curriculum Development; *Elementary School Mathematics; Geometric Concepts; *Instruction; *Mathematics Education; Number Concepts; Program Descriptions IDENTIFIERS Number Operations ABSTRACT --- Details of arithmetic topics proposed for inclusion in a modern elementary mathematics program and a rationale for the selection of these topics are given. The sequencing of the topics is discussed. (Author/DT) sJ Working Paper No. 19 The Content of 'Arithmetic Included in a Modern Elementary Mathematics Program U.S DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS SEEN REPRO Report from the Project on Individually Guided OUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN Elementary Mathematics, Phase 2: Analysis IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE Of LOU Of Mathematics Instruction CATION POSITION OR POLICY V lb. Wisconsin Research and Development CENTER FOR COGNITIVE LEARNING DIE UNIVERSITY Of WISCONSIN Madison, Wisconsin U.S. Office of Education Corder No. C03 Contract OE 5-10-154 Published by the Wisconsin Research and Development Center for Cognitive Learning, supported in part as a research and development center by funds from the United States Office of Education, Department of Health, Educa- tion, and Welfare. The opinions expressed herein do not necessarily re- flect the position or policy of the Office of Education and no official endorsement by the Office of Education should be inferred. Center No. C-03 / Contract OE 5-10-154 Working Paper No. 79 THE CONTENT OF ARITHMETIC INCLUDEDIN A MODERN ELEMENTARY MATHEMATICS PROGRAM by John G. Harvey Report from the Project on Individually Guided ElementaryMathematics Phase Two, Analysis of MathematicsIastruction Thomas A. Romberg and John G. Harvey Principal Investigators James M. Moser Associate Scientist Wisconsin Research and Development Center for'Cognitive Learning The University ,.of Wisconsin Madison, Wisconsin October 1971 NATIONAL EVALUATION COMMITTEE Samuel Brownell Henry Chauncey Elizabeth Koontz Patrick Suppes Professor of Urban Education President Wage and Labor Standards Professor Graduate School Educational Testing Service Administration, U.S. Department of Mathematics Yale University Deportment of labor, Stanford University Washington Launor F. Carter Martin Deutsch Roderick McPhee *Benton J. Underwood Senior Vice President on Director, Institute for President Professor Technology and Development Developmental Studies Punohou School, Honolulu Department of Psychology System Development Corporation N. York Medical College Northwestern University Francis S. Chase Jack Edling G. Wesley Sowards Professor Director, Teaching Research Director, Elementary Education Deportment of Educotiun Division Florida State University University of Chicago Oregon State System of Higher Education RESEARCH AND DEVELOPMENT CENTER POLICY REVIEW BOARD Leonard Bete;lwitz Russell J. Hosier Stephen C. Kleene B. Robert Tabachnick Chairman Profesior, Curriculum Dean, Cullege of Chairman, Deportment Deportment of Psychology and Instruction letters and Science of Curriculum and Instruction Archie A. Buchmiller Clauston Jenkins Donald J. McCarty Henry C. Weinlick Deputy State Superintendent Assistont Director Deon Executive Secretary Deportment of Public Instruction Coordinating Committee for School of Education Wisconsin Education Association Higher Education Robert E. Grinder Herbert J. Klizusmeier Ira Sharkansky M. Crawford Young Chairman Director, R & D Center Associate Professor of Political Associate Dean Deportment of Edur Professor of Educational Science The Graduate School Psychology Psychology EXECUTIVE COMMITTEE Edgar F. Borgatta Robert E. Davidson RussellJ. Hosier Wayne Otto Brittinghom Professor of Assistant Professor, Professor of Curriculum and Professor of Cunkulum and Sociology Educational Psychology Instruction and of Business Instruction (heading) Anne E. Buchanan Frank H. Farley *Herbert J. Klausmeier Robert G. Petzold Project Specialist Associate Professor, Director, R & 0 Center Associate Dean of the School R & 0 Ce.iter Educational Psychology Professor of Educational of Education Psychology Professor of Curriculum and Instruction and of Music Robin S. Chapman Research Associate R & 0 Center FACULTY OF PRINCIPAL INVESTIGATORS Vernon L. Allen Frank H. Farley James Moser RichardI,. Venezky Professor of Psychology Associate Professor of Educational Assistant Professor of Mathematics Assistant Professor of English Psychology Education;Visiting Scholar and of Computer Sciences Ted Czajkowski Lester S. Golub Wayne Otto Alan Voeiker Assistant Professor of Curriculum Lecturer in Curriculum and Professor of Curriculum and Assistont Professor of Curriculum and Instruction Instruction and in English Instruction (Reading) and Instruction Robed E. Davidson John G. Harvey Milton 0. Pella Larry Wilder Assistant Professor of Asiociote Professor of Professor of Curriculum and Assistant Professor of Curriculum Educational Psychology Mathematics and of Curriculurr. Instruction (Science) and Instruction and Instruction Gary A. Davis Herbert J. Klausmeier Thomas A. Romberg Peter Wolff Associate Professor of Director, R & 0 Center Associate Dintetor, R & 0 Center Assistant Professor of Educational Educational Psychology Professor of Educational Professor of Mathematics and of Psychology Psychology Curriculum and Instruction M. Vere DeVault Donald Lange B. Robert Tabachnick Professor of Curriculum and Assistant Professor of Curriculum Chairman, Deptatment Instruction (Mathematics) and Instruction of Curriculum and Instruction MANAGEMENT COUNCIL Herbert J. Klausmeier Thomas A. Romberg James Walter Dan G. Woolpert Director, R & Center Associate Director . Director Director V.A.C. Henan Professor of Dissemination Program _ Operations and Business . Educational Psychology Mary R. Quilling Director t Technical Development Program COMMITTII.CHAIRMAN ii t! STATEMENT OF FOCUS The Wisconsin Research and Development Center for Cognitive Learning focuses on contributing to a better understanding of cognitive learning by children and youth and to the improvement of related educational practices. The strategy for research and development is comprehensive. It includes basic research to generate new knowledge about the conditions and processes of learning and about the processes of instruction, and the subsequent development of research-based instructional materials, many of which are designed for use by teachers and others for use by students. These materials are tested and refined in school settings. Throughout these operations behavioral scientists, curriculum experts, academic scholars, and school people interact, insuring that the results of Center activities are based soundly on knowledge of subject matter and cognitive learning and that they are applied to the improvement of educational practice. This working paper is from the Project on Individually Guided Elementary Mathematics in Program 2. General objectives of the program are to establish rationale and strategy for developing instructional systems, to identify sequences of concepts and cognitive skills, to develop assessment procedures for those concepts and skills, to identify or develop instructional materials associated with the concepts and cognitive skills, and to generate new knowledge about instructional procedures. Contributing to the program objectives, the mathematics project has developed'and tested a televised course in arithmetic for grades 1-6 which provides not only a complete program of instruction for the pupils but also inservice training for teachers. Analysis of Mathematics instruction is currently the only active phase of the mathematics project and has a long-term goal of providing an indi- vidually guided instructional program in elementary mathematics. Preliminary activities include identifying instructional objectives, student activities, teacher activities materials, and assessment procedures for integration into a total mathematics curriculum. The third phase focused on the development of a computer system for managing individually guided instruction in mathematics and on a later extension of the system's applicability. a% TABLE OF CONTENTS Page List of Tables and Figures vii Abstract ix I Introduction 1 II Arithmetic in the Elementary School 3 .III The Arithmetic Content of a Modern Elementary Mathematics Program 7 IV Instructional Sequences for the Arithmetic Content 13 VConclusion 35 References 37 L LIST OF TABLES Table Page 1 Summary of Properties on which the Arithmetics are Different 12 s. 2 Representative.Sequencing of Arithmetic Topics 14 LIST OF FIGURES Figure 1 Sets of Numbers Ordered by Set Inclusion . 9 vii ABSTRACT This paper details the arithmetic topics proposed for inclusion in a modern elementary mathematics program, gives a rationale for the selection of these topics, and discusses the sequencing of'the topics. ix I INTRODUCTION The purpose of the Analysis 'of Mathematics Instruction Project is to generate knowledge about mathematics
Recommended publications
  • Number Theory
    “mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87 4 Number Theory Number theory is the study of the integers. Why anyone would want to study the integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . Which one don’t you understand? Sec- ond, what practical value is there in it? The mathematician G. H. Hardy expressed pleasure in its impracticality when he wrote: [Number theorists] may be justified in rejoicing that there is one sci- ence, at any rate, and that their own, whose very remoteness from or- dinary human activities should keep it gentle and clean. Hardy was specially concerned that number theory not be used in warfare; he was a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory underlies modern cryptography, which is what makes secure online communication possible. Secure communication is of course crucial in war—which may leave poor Hardy spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms. Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in Chapters 2 and 3. Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set of integers, Z. 4.1 Divisibility The nature of number theory emerges as soon as we consider the divides relation a divides b iff ak b for some k: D The notation, a b, is an abbreviation for “a divides b.” If a b, then we also j j say that b is a multiple of a.
    [Show full text]
  • FROM HARMONIC ANALYSIS to ARITHMETIC COMBINATORICS: a BRIEF SURVEY the Purpose of This Note Is to Showcase a Certain Line Of
    FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS: A BRIEF SURVEY IZABELLA ÃLABA The purpose of this note is to showcase a certain line of research that connects harmonic analysis, speci¯cally restriction theory, to other areas of mathematics such as PDE, geometric measure theory, combinatorics, and number theory. There are many excellent in-depth presentations of the vari- ous areas of research that we will discuss; see e.g., the references below. The emphasis here will be on highlighting the connections between these areas. Our starting point will be restriction theory in harmonic analysis on Eu- clidean spaces. The main theme of restriction theory, in this context, is the connection between the decay at in¯nity of the Fourier transforms of singu- lar measures and the geometric properties of their support, including (but not necessarily limited to) curvature and dimensionality. For example, the Fourier transform of a measure supported on a hypersurface in Rd need not, in general, belong to any Lp with p < 1, but there are positive results if the hypersurface in question is curved. A classic example is the restriction theory for the sphere, where a conjecture due to E. M. Stein asserts that the Fourier transform maps L1(Sd¡1) to Lq(Rd) for all q > 2d=(d¡1). This has been proved in dimension 2 (Fe®erman-Stein, 1970), but remains open oth- erwise, despite the impressive and often groundbreaking work of Bourgain, Wol®, Tao, Christ, and others. We recommend [8] for a thorough survey of restriction theory for the sphere and other curved hypersurfaces. Restriction-type estimates have been immensely useful in PDE theory; in fact, much of the interest in the subject stems from PDE applications.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • From Arithmetic to Algebra
    From arithmetic to algebra Slightly edited version of a presentation at the University of Oregon, Eugene, OR February 20, 2009 H. Wu Why can’t our students achieve introductory algebra? This presentation specifically addresses only introductory alge- bra, which refers roughly to what is called Algebra I in the usual curriculum. Its main focus is on all students’ access to the truly basic part of algebra that an average citizen needs in the high- tech age. The content of the traditional Algebra II course is on the whole more technical and is designed for future STEM students. In place of Algebra II, future non-STEM would benefit more from a mathematics-culture course devoted, for example, to an understanding of probability and data, recently solved famous problems in mathematics, and history of mathematics. At least three reasons for students’ failure: (A) Arithmetic is about computation of specific numbers. Algebra is about what is true in general for all numbers, all whole numbers, all integers, etc. Going from the specific to the general is a giant conceptual leap. Students are not prepared by our curriculum for this leap. (B) They don’t get the foundational skills needed for algebra. (C) They are taught incorrect mathematics in algebra classes. Garbage in, garbage out. These are not independent statements. They are inter-related. Consider (A) and (B): The K–3 school math curriculum is mainly exploratory, and will be ignored in this presentation for simplicity. Grades 5–7 directly prepare students for algebra. Will focus on these grades. Here, abstract mathematics appears in the form of fractions, geometry, and especially negative fractions.
    [Show full text]
  • Outline of Mathematics
    Outline of mathematics The following outline is provided as an overview of and 1.2.2 Reference databases topical guide to mathematics: • Mathematical Reviews – journal and online database Mathematics is a field of study that investigates topics published by the American Mathematical Society such as number, space, structure, and change. For more (AMS) that contains brief synopses (and occasion- on the relationship between mathematics and science, re- ally evaluations) of many articles in mathematics, fer to the article on science. statistics and theoretical computer science. • Zentralblatt MATH – service providing reviews and 1 Nature of mathematics abstracts for articles in pure and applied mathemat- ics, published by Springer Science+Business Media. • Definitions of mathematics – Mathematics has no It is a major international reviewing service which generally accepted definition. Different schools of covers the entire field of mathematics. It uses the thought, particularly in philosophy, have put forth Mathematics Subject Classification codes for orga- radically different definitions, all of which are con- nizing their reviews by topic. troversial. • Philosophy of mathematics – its aim is to provide an account of the nature and methodology of math- 2 Subjects ematics and to understand the place of mathematics in people’s lives. 2.1 Quantity Quantity – 1.1 Mathematics is • an academic discipline – branch of knowledge that • Arithmetic – is taught at all levels of education and researched • Natural numbers – typically at the college or university level. Disci- plines are defined (in part), and recognized by the • Integers – academic journals in which research is published, and the learned societies and academic departments • Rational numbers – or faculties to which their practitioners belong.
    [Show full text]
  • 18.782 Arithmetic Geometry Lecture Note 1
    Introduction to Arithmetic Geometry 18.782 Andrew V. Sutherland September 5, 2013 1 What is arithmetic geometry? Arithmetic geometry applies the techniques of algebraic geometry to problems in number theory (a.k.a. arithmetic). Algebraic geometry studies systems of polynomial equations (varieties): f1(x1; : : : ; xn) = 0 . fm(x1; : : : ; xn) = 0; typically over algebraically closed fields of characteristic zero (like C). In arithmetic geometry we usually work over non-algebraically closed fields (like Q), and often in fields of non-zero characteristic (like Fp), and we may even restrict ourselves to rings that are not a field (like Z). 2 Diophantine equations Example (Pythagorean triples { easy) The equation x2 + y2 = 1 has infinitely many rational solutions. Each corresponds to an integer solution to x2 + y2 = z2. Example (Fermat's last theorem { hard) xn + yn = zn has no rational solutions with xyz 6= 0 for integer n > 2. Example (Congruent number problem { unsolved) A congruent number n is the integer area of a right triangle with rational sides. For example, 5 is the area of a (3=2; 20=3; 41=6) triangle. This occurs iff y2 = x3 − n2x has infinitely many rational solutions. Determining when this happens is an open problem (solved if BSD holds). 3 Hilbert's 10th problem Is there a process according to which it can be determined in a finite number of operations whether a given Diophantine equation has any integer solutions? The answer is no; this problem is formally undecidable (proved in 1970 by Matiyasevich, building on the work of Davis, Putnam, and Robinson). It is unknown whether the problem of determining the existence of rational solutions is undecidable or not (it is conjectured to be so).
    [Show full text]
  • Sines and Cosines of Angles in Arithmetic Progression
    VOL. 82, NO. 5, DECEMBER 2009 371 Sines and Cosines of Angles in Arithmetic Progression MICHAEL P. KNAPP Loyola University Maryland Baltimore, MD 21210-2699 [email protected] doi:10.4169/002557009X478436 In a recent Math Bite in this MAGAZINE [2], Judy Holdener gives a physical argument for the relations N 2πk N 2πk cos = 0and sin = 0, k=1 N k=1 N and comments that “It seems that one must enter the realm of complex numbers to prove this result.” In fact, these relations follow from more general formulas, which can be proved without using complex numbers. We state these formulas as a theorem. THEOREM. If a, d ∈ R,d= 0, and n is a positive integer, then − n 1 sin(nd/2) (n − 1)d (a + kd) = a + sin ( / ) sin k=0 sin d 2 2 and − n 1 sin(nd/2) (n − 1)d (a + kd) = a + . cos ( / ) cos k=0 sin d 2 2 We first encountered these formulas, and also the proof given below, in the journal Arbelos, edited (and we believe almost entirely written) by Samuel Greitzer. This jour- nal was intended to be read by talented high school students, and was published from 1982 to 1987. It appears to be somewhat difficult to obtain copies of this journal, as only a small fraction of libraries seem to hold them. Before proving the theorem, we point out that, though interesting in isolation, these ( ) = 1 + formulas are more than mere curiosities. For example, the function Dm t 2 m ( ) k=1 cos kt is well known in the study of Fourier series [3] as the Dirichlet kernel.
    [Show full text]
  • Arithmetic Calculus” with Some Applications: New Terms, Definitions, Notations and Operators
    Applied Mathematics, 2014, 5, 2909-2934 Published Online November 2014 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2014.519277 Introducing “Arithmetic Calculus” with Some Applications: New Terms, Definitions, Notations and Operators Rahman Khatibi Consultant Mathematical Modeller, Swindon, UK Email: [email protected] Received 3 September 2014; revised 25 September 2014; accepted 10 October 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract New operators are presented to introduce “arithmetic calculus”, where 1) the operators are just obvious mathematical facts, and 2) arithmetic calculus refers to summing and subtracting opera- tions without solving equations. The sole aim of this paper is to make a case for arithmetic calculus, which is lurking in conventional mathematics and science but has no identity of its own. The un- derlying thinking is: 1) to shift the focus from the whole sequence to any of its single elements; and 2) to factorise each element to building blocks and rules. One outcome of this emerging calculus is to understand the interconnectivity in a family of sequences, without which they are seen as dis- crete entities with no interconnectivity. Arithmetic calculus is a step closer towards deriving a “Tree of Numbers” reminiscent of the Tree of Life. Another windfall outcome is to show that the deconvolution problem is explicitly well-posed but at the same time implicitly ill-conditioned; and this challenges a misconception that this problem is ill-posed.
    [Show full text]
  • A Brief History of Mathematics a Brief History of Mathematics
    A Brief History of Mathematics A Brief History of Mathematics What is mathematics? What do mathematicians do? A Brief History of Mathematics What is mathematics? What do mathematicians do? http://www.sfu.ca/~rpyke/presentations.html A Brief History of Mathematics • Egypt; 3000B.C. – Positional number system, base 10 – Addition, multiplication, division. Fractions. – Complicated formalism; limited algebra. – Only perfect squares (no irrational numbers). – Area of circle; (8D/9)² Æ ∏=3.1605. Volume of pyramid. A Brief History of Mathematics • Babylon; 1700‐300B.C. – Positional number system (base 60; sexagesimal) – Addition, multiplication, division. Fractions. – Solved systems of equations with many unknowns – No negative numbers. No geometry. – Squares, cubes, square roots, cube roots – Solve quadratic equations (but no quadratic formula) – Uses: Building, planning, selling, astronomy (later) A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Papyrus created! – Pythagoras; mathematics as abstract concepts, properties of numbers, irrationality of √2, Pythagorean Theorem a²+b²=c², geometric areas – Zeno paradoxes; infinite sum of numbers is finite! – Constructions with ruler and compass; ‘Squaring the circle’, ‘Doubling the cube’, ‘Trisecting the angle’ – Plato; plane and solid geometry A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Aristotle; mathematics and the physical world (astronomy, geography, mechanics), mathematical formalism (definitions, axioms, proofs via construction) – Euclid; Elements –13 books. Geometry,
    [Show full text]
  • IV.5 Arithmetic Geometry Jordan S
    i 372 IV. Branches of Mathematics where the aj,i1,...,in are indeterminates. If we write with many nice pictures and reproductions. A Scrap- g1f1 + ··· + gmfm as a polynomial in the variables book of Complex Curve Theory (American Mathemat- x1,...,xn, then all the coefficients must vanish, save ical Society, Providence, RI, 2003), by C. H. Clemens, the constant term which must equal 1. Thus we get and Complex Algebraic Curves (Cambridge University a system of linear equations in the indeterminates Press, Cambridge, 1992), by F. Kirwan, also start at an easily accessible level, but then delve more quickly into aj,i1,...,in . The solvability of systems of linear equations is well-known (with good computer implementations). advanced subjects. Thus we can decide if there is a solution with deg gj The best introduction to the techniques of algebraic 100. Of course it is possible that 100 was too small geometry is Undergraduate Algebraic Geometry (Cam- a guess, and we may have to repeat the process with bridge University Press, Cambridge, 1988), by M. Reid. larger and larger degree bounds. Will this ever end? For those wishing for a general overview, An Invitation The answer is given by the following result, which was to Algebraic Geometry (Springer, New York, 2000), by proved only recently. K. E. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves, is a good choice, while Algebraic Geometry (Springer, New Effective Nullstellensatz. Let f1,...,fm be polyno- York, 1995), by J. Harris, and Basic Algebraic Geometry, mials of degree less than or equal to d in n variables, volumes I and II (Springer, New York, 1994), by I.
    [Show full text]
  • Elementary Algebra
    ELEMENTARY ALGEBRA 10 Overview The Elementary Algebra section of ACCUPLACER contains 12 multiple choice Algebra questions that are similar to material seen in a Pre-Algebra or Algebra I pre-college course. A calculator is provided by the computer on questions where its use would be beneficial. On other questions, solving the problem using scratch paper may be necessary. Expect to see the following concepts covered on this portion of the test: Operations with integers and rational numbers, computation with integers and negative rationals, absolute values, and ordering. Operations with algebraic expressions that must be solved using simple formulas and expressions, adding and subtracting monomials and polynomials, multiplying and dividing monomials and polynomials, positive rational roots and exponents, simplifying algebraic fractions, and factoring. Operations that require solving equations, inequalities, and word problems, solving linear equations and inequalities, using factoring to solve quadratic equations, solving word problems and written phrases using algebraic concepts, and geometric reasoning and graphing. Testing Tips Use resources provided such as scratch paper or the calculator to solve the problem. DO NOT attempt to only solve problems in your head. Start the solving process by writing down the formula or mathematic rule associated with solving the particular problem. Put your answer back into the original problem to confirm that your answer is correct. Make an educated guess if you are unsure of the answer. 11 Algebra
    [Show full text]
  • Arithmetic Dynamics, Arithmetic Geometry, and Number Theory Joseph H
    Arithmetic Dynamics, Arithmetic Geometry, and Number Theory Joseph H. Silverman Brown University MAGNTS (Midwest Arithmetic Geometry and Number Theory Series) October 12{13, 2019 0 Arithmetic Dynamics and Arithmetic Geometry 1 What is Arithmetic Dynamics? Arithmetic Geometry: Study solutions to polyno- mial equations (points on algebraic varieties) over non- algebraically closed fields. (Discrete) Dynamical Systems: Study orbits of points under iteration of a function. Arithmetic Dynamics: Study number theoretic prop- erties of orbits of points on algebraic varieties. A lot of arithmetic dynamics comes by analogy from arithmetic geometry. Sometimes the analogy is quite di- rect, sometimes less so, and there are parts of arithmetic geometry that still lack dynamical analogues. Today's talk will be a survey of what arithmetic dynamics is all about, with details on its connections to the arithmetic geometry that we all know and love. Then in tomorrow's talk I'll delve more deeply into some specific topics. Arithmetic Dynamics and Arithmetic Geometry 2 In Arithmetic Geometry We Study . Elliptic curves / higher dim'l abelian varieties Torsion points Torsion points defined over a fixed K. Fields generated by torsion points. Image of Galois G(K=K¯ ) ! Aut(Ators). Torsion points on subvarieties (dim A ≥ 2). Mordell{Weil groups Rank of K-rational points . for fixed A and varying K; for fixed K and varying A. Intersection with subvarieties (dim A ≥ 2). Moduli spaces of elliptic curve and abelian varieties Geometry of moduli spaces, e.g., X0(N) and Ag. Distribution of \special" points (CM moduli). Modular forms, L-series, Hecke operators, . Arithmetic Dynamics and Arithmetic Geometry 3 In Discrete Dynamics We Study .
    [Show full text]