2.3 Water Supply System for the Lower Mokelumne River Watershed

Total Page:16

File Type:pdf, Size:1020Kb

2.3 Water Supply System for the Lower Mokelumne River Watershed LOWER MOKELUMNE RIVER WATERSHED SANITARY SURVEY Prepared for the City of Lodi’s Surface Water Treatment Facility Lodi, CA October 2, 2015 City of Lodi | Surface Water Treatment Facility WATERSHED SANITARY SURVEY Page intentionally blank. City of Lodi | Surface Water Treatment Facility WATERSHED SANITARY SURVEY Table of Contents Executive Summary ...................................................................................................................................... 1 Background ................................................................................................................................................... 1 City of Lodi Water Supply System ................................................................................................................ 1 Contributing Watersheds ............................................................................................................................... 1 Significant Potential Contaminant Sources and Source Water Quality Recommendations ......................... 2 Invasive Species ........................................................................................................................................... 3 1 Introduction ...................................................................................................................................... 5 1.1 Background................................................................................................................................ 5 1.2 Objectives .................................................................................................................................. 6 1.3 Conduct of the Study ................................................................................................................. 6 1.4 Report Content and Organization .............................................................................................. 7 2 Watershed Study Area and Water Supply System .......................................................................... 9 2.1 Watershed Sanitary Survey Study Area Description ................................................................. 9 2.1.1 Watershed Hydrology.......................................................................................................... 9 2.1.2 Geology and Ecology ........................................................................................................ 13 2.1.3 Land Use ........................................................................................................................... 14 2.1.4 River Use .......................................................................................................................... 15 2.2 Upper Mokelumne River Watershed Summary ....................................................................... 16 2.2.1 Upper Mokelumne River Watershed Description .............................................................. 16 2.2.2 Summary of the 2011 Upper Mokelumne River Watershed Sanitary Survey ................... 20 2.3 Water Supply System for the Lower Mokelumne River Watershed ........................................ 21 2.3.1 Surface Water Treatment Facility Description .................................................................. 21 2.3.2 Description of Technology ................................................................................................ 25 2.3.3 Emergency Response Plans ............................................................................................. 26 2.3.4 Water Quality Complaints ................................................................................................. 28 3 Potential Contaminant Sources ..................................................................................................... 29 3.1 Wastewater .............................................................................................................................. 29 3.1.1 Water Quality Concerns .................................................................................................... 29 3.2 Septic Tanks ............................................................................................................................ 31 3.2.1 Water Quality Concerns .................................................................................................... 31 3.2.2 Watershed Management ................................................................................................... 31 3.3 Reclaimed Water ..................................................................................................................... 32 i City of Lodi | Surface Water Treatment Facility WATERSHED SANITARY SURVEY 3.3.1 Water Quality Concerns .................................................................................................... 33 3.3.2 Watershed Management ................................................................................................... 33 3.4 Urban and Industrial Runoff ..................................................................................................... 33 3.4.1 Water Quality Concerns .................................................................................................... 33 3.4.2 Watershed Management ................................................................................................... 33 3.5 Agriculture ................................................................................................................................ 36 3.5.1 Water Quality Concerns .................................................................................................... 37 3.5.2 Watershed Management ................................................................................................... 37 3.6 Grazing Animals & Confined Animal Facilities ........................................................................ 38 3.6.1 Water Quality Concerns .................................................................................................... 39 3.6.2 Watershed Management ................................................................................................... 39 3.7 Wild Animals ............................................................................................................................ 41 3.7.1 Water Quality Concerns .................................................................................................... 41 3.7.2 Watershed Management ................................................................................................... 42 3.8 Mine Runoff ............................................................................................................................. 42 3.8.1 Water Quality Concerns .................................................................................................... 43 3.8.2 Watershed Management ................................................................................................... 43 3.9 Recreation ............................................................................................................................... 44 3.9.1 Water Quality Concern ...................................................................................................... 45 3.10 Solid and Hazardous Waste Disposal Facilities ...................................................................... 48 3.10.1 Water Quality Concern ...................................................................................................... 49 3.10.2 Watershed Management ................................................................................................... 49 3.11 Unauthorized Activity ............................................................................................................... 50 3.11.1 Water Quality Concerns .................................................................................................... 50 3.11.2 Watershed Management ................................................................................................... 51 3.12 Hazardous Materials Spills and Traffic Accidents ................................................................... 54 3.12.1 Water Quality Concerns .................................................................................................... 54 3.12.2 Watershed Management ................................................................................................... 54 3.13 Geologic Hazards .................................................................................................................... 55 3.13.1 Water Quality Concerns .................................................................................................... 55 3.13.2 Watershed Management ................................................................................................... 55 3.14 Fires ......................................................................................................................................... 56 3.14.1 Water Quality Concerns .................................................................................................... 57 3.14.2 Watershed Management ................................................................................................... 57 ii City of Lodi | Surface Water Treatment Facility WATERSHED SANITARY SURVEY 3.15 Invasive Species ...................................................................................................................... 58 3.15.1 Water Quality Concerns ...................................................................................................
Recommended publications
  • Mokelumne/Amador/Calaveras Integrated Regional Water Management Plan
    Mokelumne/Amador/Calaveras Integrated Regional Water Management Plan November 2006 Mokelumne/Amador/Calaveras Integrated Regional Water Management Plan Prepared by: Water and Environment November 2006 Mokelumne, Amador, and Calaveras IRWMP Table of Contents Executive Summary..................................................................................................................... i ES-1 Background and Authority........................................................................................... i ES-2 Local and Regional Integration .................................................................................. ii ES-3 Goals and Objectives .................................................................................................iii ES-4 Project Prioritization ...................................................................................................iii ES-5 Implementation.......................................................................................................... iv Chapter 1 Introduction ...........................................................................................................1-1 1.1 IRWMP Background................................................................................................1-1 1.2 IRWMP Standards ..................................................................................................1-2 Chapter 2 M/A/C IRWMP Development .................................................................................2-1 2.1 Resource Management & Coordination
    [Show full text]
  • Notice of Special Meeting
    BOARD OF DIRECTORS EAST BAY MUNICIPAL UTILITY DISTRICT 375 - 11th Street, Oakland, CA 94607 Office of the Secretary: (510) 287-0440 Notice of Special Meeting FY22 and FY23 Budget Workshop #2 Tuesday, March 23, 2021 9:00 a.m. **Virtual** At the call of President Doug A. Linney, the Board of Directors has scheduled a Budget Workshop for 9:00 a.m. on Tuesday, March 23, 2021. Due to COVID-19 and in accordance with the most recent Alameda County Health Order, and with the Governor’s Executive Order N-29-20 which suspends portions of the Brown Act, this meeting will be conducted by webinar or teleconference only. In compliance with said orders, a physical location will not be provided for this meeting. These measures will only apply during the period in which state or local public health officials have imposed or recommended social distancing. The Board will meet in workshop session to review the proposed Fiscal Year 2022 (FY22) and Fiscal Year 2023 biennial budget, rates, operating and capital priorities, and staffing; the proposed FY22 System Capacity Charge and FY22 Wastewater Capacity Fee; and will receive follow-up information from the January 26, 2021 Budget Workshop #1. Dated: March 18, 2021 _______________________________ Rischa S. Cole Secretary of the District W:\Board of Directors - Meeting Related Docs\Notices\Notices 2021\032321_FY22_FY23 Budget Workshop 2.docx This page is intentionally left blank. BOARD OF DIRECTORS EAST BAY MUNICIPAL UTILITY DISTRICT 375 - 11th Street, Oakland, CA 94607 Office of the Secretary: (510) 287-0440 AGENDA Special Meeting FY22 and FY23 Budget Workshop #2 Tuesday, March 23, 2021 9:00 a.m.
    [Show full text]
  • 4.9 Hydrology and Water Quality
    4.9 HYDROLOGY AND WATER QUALITY This section describes the regulations pertaining to, and the existing conditions of, surface water, groundwater, water quality, and water supply existing within the planning area, and an evaluation of impacts associated with implementation of the Draft General Plan. 4.9.1 REGULATORY SETTING FEDERAL PLANS, POLICIES, REGULATIONS, AND LAWS Clean Water Act The Clean Water Act of 1972 (CWA) is the primary federal law that governs and authorizes water quality control activities by the U.S. Environmental Protection Agency (EPA), the lead federal agency responsible for water quality management. By establishing water quality standards, issuing permits, monitoring discharges, and managing polluted runoff, the CWA seeks to restore and maintain the chemical, physical, and biological integrity of surface waters to support “the protection and propagation of fish, shellfish, and wildlife and recreation in and on the water.” EPA is the federal agency with primary authority for implementing regulations adopted pursuant to CWA, and has delegated the state of California as the authority to implement and oversee most of the programs authorized or adopted for CWA compliance through the Porter-Cologne Water Quality Control Act of 1969 described below. Water Quality Criteria and Standards EPA has published water quality regulations under Volume 40 of the Code of Federal Regulations (40 CFR). Section 303 of the CWA requires states to adopt water quality standards for all surface waters of the United States. As defined by the CWA, water quality standards consist of two elements: (1) designated beneficial uses of the water body in question and (2) criteria that protect the designated uses.
    [Show full text]
  • Verifying Reported Historical Natural Barriers to the Upstream Migration Of
    1 2 Verifying Reported Historical Natural Barriers to the Upstream Migration of 3 Chinook Salmon (Oncorhynchus tshawytscha) and Steelhead (Oncorhynchus mykiss) 4 in the Mokelumne River Watershed 5 6 7 February, 2014 8 9 10 11 12 Stephen R. Boyd 13 Fisheries and Wildlife Division, East Bay Municipal Utility District, 1 Winemasters Way, 14 Suite K, Lodi, CA 95240, USA. Correspondent: [email protected] 15 16 17 18 19 20 21 22 23 1 24 ACKNOWLEDGMENTS 25 26 I am indebted to Elton V. Rodman, owner of Roaring Camp, for allowing access through 27 his property to a difficult to access part of the Mokelumne River Basin near the 28 confluence of the North Fork and Middle Fork, for providing valuable information 29 regarding the locations of potential migration barriers and how to reach them, and for 30 providing some insightful first hand historical accounts regarding salmonids spawning in 31 the river in years past. Ricky Lague, Mike Rodman, and Dennis Rodman are deserving 32 of high praise as well for providing cheerful, valuable advice and guide service. Pat 33 McGreevy provided very useful trail maps of the region around Glenco and guided 34 EBMUD staff during the 2011 site visit to the Middle Fork. I am also grateful for help 35 received on this project from EBMUD colleagues Robyn Bilski, Casey Del Real, Charles 36 Hunter, and James Jones, and from two anonymous reviewers for their comments on a 37 draft of this report. Thank you all. 38 39 ABSTRACT 40 41 Substantial uncertainty exists regarding historical use of the Mokelumne River 42 watershed by native anadromous salmonid runs.
    [Show full text]
  • Lower Mokelumne River Salmonid Redd Survey Report: October 2011 Through February 2012
    Lower Mokelumne River Salmonid Redd Survey Report: October 2011 through February 2012 June 2013 Robyn Bilski and Ed Rible East Bay Municipal Utility District, 1 Winemasters Way, Lodi, CA 95240 Key words: lower Mokelumne River, salmonid, fall-run Chinook salmon, Oncorhynchus mykiss, redd survey, spawning, superimposition, gravel enhancement ___________________________________________________________________________ Abstract Weekly fall-run Chinook salmon (Oncorhynchus tshawytscha) and winter-run steelhead/rainbow trout (O. mykiss) spawning surveys were conducted on the lower Mokelumne River from 19 October 2011 through 28 February 2012. Estimated total escapement during the 2011/2012 season was 18,596 Chinook salmon. The estimated number of in-river spawners was 2,674 Chinook salmon. The first salmon redd was detected on 19 October 2011. During the surveys, a total of 564 salmon redds were identified. Forty-three (7.6%) Chinook salmon redds were superimposed by other Chinook salmon redds and 336 (59.6%) redds were located within gravel enhancement areas. The reach from Camanche Dam to Mackville Road (reach 6) contained 512 (90.2%) salmon redds and the reach from Mackville Road to Elliott Road (reach 5) contained 52 (9.8%) salmon redds. The highest number of Chinook salmon redd detections (161) took place on 22 November 2011. The first O. mykiss redd was found on 22 November 2011. Sixty-eight O. mykiss redds were identified. Nine O. mykiss redds were superimposed on Chinook salmon redds and one O. mykiss redd was superimposed on another O. mykiss redd. Thirty-one (45.6%) O. mykiss redds were located within gravel enhancement areas. Reach 6 contained 51 (75%) redds and reach 5 contained 17 (25%) redds.
    [Show full text]
  • Lower Mokelumne River Project Joint Settlement Agreement Ten-Year Review
    LOWER MOKELUMNE RIVER PROJECT JOINT SETTLEMENT AGREEMENT TEN-YEAR REVIEW PARTNERSHIP STEERING COMMITTEE East Bay Municipal Utility District California Department of Fish and Game U.S. Fish and Wildlife Service 2008 LOWER MOKELUMNE RIVER JOINT SETTLEMENT AGREEMENT TEN-YEAR REVIEW 1.0 BACKGROUND The Federal Energy Regulatory Commission’s (FERC) November 27, 1998 Order “Approving Settlement Agreement and Amending License for the East Bay Municipal Utility District’s Lower Mokelumne River Project No. 2916” approved the Joint Settlement Agreement (JSA) entered into by East Bay Municipal Utility District (EBMUD), U.S. Fish and Wildlife Service (USFWS) and California Department of Fish and Game (CDFG). The JSA included flow and non-flow measures, and required EBMUD, USFWS, and CDFG to develop a plan Water Quality and Resource Management Program (WQRMP) for FERC approval. The Partnership Steering Committee, composed of one representative each from CDFG, USFWS and EBMUD, developed WQRMP to define reasonable goals, measures, performance criteria and responsive actions associated with the implementation of the JSA. It includes a comprehensive monitoring and applied research program integrated with a well-coordinated program to adaptively manage water and power supply operations, flood control, hatchery operations and ecosystem rehabilitation actions. It was approved by FERC in 2001. JSA Goals • Provide, to the extent feasible, habitat quality and availability in the lower Mokelumne River to maintain fishery, wildlife and riparian resources in good
    [Show full text]
  • Vol 2 Appa EBMUD Component of Los Vaqueros Reservoir Expansion
    Volume 2 of 2 LOS VAQUEROS RESERVOIR EXPANSION PROJECT DRAFT SUPPLEMENT TO THE FINAL EIS/EIR Prepared for June 2017 United States Department of the Interior Bureau of Reclamation Mid-Pacific Region Contra Costa Water District Cooperating Agencies California Department of Water Resources National Marine Fisheries Services United States Army Corps of Engineers United States Fish and Wildlife Service Western Area Power Administration Los Vaqueros Reservoir, Contra Costa County Volume 2 of 2 LOS VAQUEROS RESERVOIR EXPANSION PROJECT DRAFT SUPPLEMENT TO THE FINAL EIS/EIR Prepared for June 2017 United States Department of the Interior Bureau of Reclamation Mid-Pacific Region Contra Costa Water District Cooperating Agencies California Department of Water Resources National Marine Fisheries Services United States Army Corps of Engineers United States Fish and Wildlife Service Western Area Power Administration TABLE OF CONTENTS Appendices – Volume 2 Page A. EBMUD Component of Los Vaqueros Reservoir Expansion Project ............................A-1 A-1 Model Study Description and Assumptions; Model Results for Project at 190 MGD versus Baseline at 190MGD .......................................................... A-1-1 A-2 Model Results for Cumulative With Project versus Cumulative without Project .. A-2-1 B. California WaterFix Sensitivity Study .............................................................................B-1 C. Sensitivity Study re Partner Benefits with Water Transfers ........................................... C-1 D. NEPA Context
    [Show full text]
  • Hydrology, Water Supply, and Power Chapter 3 Hydrology, Water Supply, and Power
    Chapter 3 Hydrology, Water Supply, and Power Chapter 3 Hydrology, Water Supply, and Power Affected Environment California’s flood control, water supply, and hydropower generation systems are intricately linked together through physical and institutional arrangements. Water supply diversions, as proposed for this project, have effects throughout the system of river, reservoir, groundwater, and water quality management operations. The State Water Project (SWP) and CVP provide a majority of the water storage and conveyance capacity of the system in combination with a numerous smaller systems that are operated by water supply and agricultural entities. Therefore, forecasting and planning for annual water supply, demand, and delivery functions are influenced with each additional project that serves to use water from the system. Consequently, the following section provides an overview of the major northern California water storage and conveyance facilities. The “Affected Environment” section describes the hydrologic and water supply conditions in the Sacramento and Mokelumne River basins and Sacramento–San Joaquin Delta (Delta). Each of the project alternatives (i.e., Alternatives 2, 3, 4, 5, and 6) under consideration has the potential to change the timing, location, and volume of water diverted from the CVP system. To determine the probable magnitude and effect of these changes and to evaluate the ability of the alternatives to meet FRWA’s project objectives, FRWA and Reclamation have used available technology to extensively model hydrologic conditions. This section also includes a description of the hydrologic modeling and related assumptions used for the analysis. This chapter provides information on the evaluation of river and reservoir hydrology conducted for this EIR/EIS.
    [Show full text]
  • Historical and Present Distribution of Chinook Salmon in the Central Valley Drainage of California
    Historical and Present Distribution of Chinook Salmon in the Central Valley Drainage of California Ronald M. Yoshiyama, Eric R. Gerstung, Frank W. Fisher, and Peter B. Moyle Abstract Chinook salmon (Oncorhynchus tshawytscha) formerly were highly abundant and widely distributed in virtually all the major streams of California’s Central Valley drainage—encompassing the Sacramento River basin in the north and San Joaquin River basin in the south. We used information from historical narratives and ethnographic accounts, fishery records and locations of in-stream natural barriers to determine the historical distributional limits and, secondarily, to describe at least qualitatively the abundances of chinook salmon within the major salmon-producing Central Valley watersheds. Indi- vidual synopses are given for each of the larger streams that histori- cally supported or currently support salmon runs. In the concluding section, we compare the historical distributional limits of chinook salmon in Central Valley streams with present-day distributions to estimate the reduction of in-stream salmon habitat that has resulted from human activities—namely, primarily the con- struction of dams and other barriers and dewatering of stream reaches. We estimated that at least 1,057 mi (or 48%) of the stream lengths historically available to salmon have been lost from the origi- nal total of 2,183 mi in the Central Valley drainage. We included in these assessments all lengths of stream that were occupied by salmon, whether for spawning and holding or only as migration cor- ridors. In considering only spawning and holding habitat (in other words, excluding migration corridors in the lower rivers), the propor- tionate reduction of the historical habitat range was far more than 48% and probably exceeded 72% because most of the former spawn- ing and holding habitat was located in upstream reaches that are now inaccessible for salmon.
    [Show full text]
  • Salmon, Steelhead, and Trout in California
    ! "#$%&'(!")**$+*#,(!#',!-.&/)! 0'!1#$02&.'0#! !"#"$%&'(&#)&*+,-.+#"/0&1#$)#& !"#$%&#'"(&))*++*&,$-"./"012*3&#,*1"4#&5'6"7889" PETER B. MOYLE, JOSHUA A. ISRAEL, AND SABRA E. PURDY CENTER FOR WATERSHED SCIENCES, UNIVERSITY OF CALIFORNIA, DAVIS DAVIS, CA 95616 -#3$*!&2!1&')*')4! !0:;<=>?@AB?;4C"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"E" F;4G<@H04F<;"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"I" :>!B!4J"B<H;4!F;C"KG<LF;0?"=F;4?G"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"7E" :>!B!4J"B<H;4!F;C"KG<LF;0?"CHBB?G"C4??>J?!@"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"E7" ;<G4J?G;"0!>FM<G;F!"0<!C4!>"=F;4?G"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"IE" ;<G4J?G;"0!>FM<G;F!"0<!C4!>"CHBB?G"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"NO" 0?;4G!>"L!>>?P"C4??>J?!@"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"OI" 0?;4G!>"0!>FM<G;F!"0<!C4"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"Q7" C<H4JR0?;4G!>"0!>FM<G;F!"0<!C4"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"QS" C<H4J?G;"0!>FM<G;F!"0<!C4"C4??>J?!@""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"9O" G?CF@?;4"0<!C4!>"G!F;T<="4G<H4"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"SQ"
    [Show full text]
  • Final Water and Wastewater Municipal Service Review Adopted June 18, 2012
    Final Water and Wastewater Municipal Service Review Adopted June 18, 2012 Calaveras Agency Formation Commission By Burr, Stephenson and Benoit TABLE OF CONTENTS PREFACE .............................................................................................................................................................. VIII 1. EXECUTIVE SUMMARY ..................................................................................................................................... 1 2. LAFCO AND MUNICIPAL SERVICES REVIEWS ........................................................................................... 7 LAFCO OVERVIEW ................................................................................................................................................... 7 SPHERE OF INFLUENCE UPDATES ............................................................................................................................ 11 3. GROWTH .............................................................................................................................................................. 14 RECENT GROWTH .................................................................................................................................................... 14 PROJECTED GROWTH ............................................................................................................................................... 16 4. WATER .................................................................................................................................................................
    [Show full text]
  • Population Trends and Escapement Estimation of Mokelumne River Fall-Run Chinook Salmon (Oncorhynchus Tshawytscha)
    Population Trends and Escapement Estimation of Mokelumne River Fall-run Chinook Salmon (Oncorhynchus tshawytscha) Joseph J. Miyamoto and Roger D. Hartwell Abstract In 1990 the East Bay Municipal Utility District (EBMUD) began a pro- gram to monitor the fall-run chinook salmon (Oncorhynchus tshaw- ytscha) populations in the lower Mokelumne River using video and trapping at Woodbridge Dam and weekly redd surveys. Over the eight years of this monitoring program, the Mokelumne River fall-run chinook salmon escapement showed a trend of increased abundance of both hatchery and natural spawners. The 1997 estimated total spawning escapement (combined hatchery and natural run) was 10,175 compared to a spawning escapement of 497 in 1990 and the 57-year average escapement of 3,434 fish. The esti- mated natural spawning population fluctuated from a low of 369 in 1991 to a high of 3,892 fish (1,739.3 ± 1,384.9) in 1996. The percentage of natural spawners ranged between 31% to 90% (52.3 ± 19.9) of the total spawning escapement during the 1991–1997 period. Significant correlations were observed between the number of redds and total escapement (R2 = 0.941, P < 0.0001) and the hatchery returns and total spawning escapement (R2 = 0.972, P < 0.001). The later cor- relation was used to determine the accuracy of past spawning escape- ment estimates based upon a similar correlation using a narrower dataset. These results suggest accurate total spawning escapement estimates can be obtained from hatchery returns and from redd counts. Escape- ment estimates calculated from redd counts and compared with known estimates were accurate in the mid-range while those calcu- lated from hatchery returns were accurate throughout the range of run sizes.
    [Show full text]