The Effect of Hypoxia on Fish Swimming Performance and Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Hypoxia on Fish Swimming Performance and Behaviour Chapter 6 The Effect of Hypoxia on Fish Swimming Performance and Behaviour P. Domenici, N. A. Herbert, C. Lefrançois, J. F. Steffensen and D. J. McKenzie Abstract Oxygen depletion, hypoxia, can be a common stressor in aquatic hab- itats, including aquaculture. Hypoxia limits aerobic swimming performance in fish, by limiting their aerobic metabolic scope. Hypoxia also elicits changes in spon- taneous swimming activity, typically causing a decrease in swimming speed in sedentary species and an increase in active species. However, fish do have the capacity to avoid hypoxia and actively choose well-oxygenated areas. Hypoxia causes differences in fish behaviour in schools, it may reduce school density and size and influence activities such as shuffling within schools. Hypoxia also influ- ences predator–prey interactions, in particular by reducing fast-start performance. Thus, through effects on swimming, hypoxia can have profound effects on species distributions in the field. In aquaculture, effects of hypoxia may be particularly significant in sea cages. It is therefore important to understand the nature and thresholds of effects of hypoxia on swimming activity to extrapolate to potential impacts on fish in aquaculture. P. Domenici (&) CNR-IAMC Loc. Sa Mardini, Torregrande, Oristano, Italy e-mail: [email protected] N. A. Herbert Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand C. Lefrançois UMR 6250 LIENSS (CNRS-University of La Rochelle), 2 rue Olympe de Gouges, 17000 La Rochelle, France J. F. Steffensen Marine Biological Laboratory, Biological Institute, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark D. J. McKenzie UMR 5119 Ecologie des Systèmes Marins Côtiers, Université Montpellier II, Place Eugène Bataillon cc 093, Montpellier cedex 5, 34095 Montpellier, France A. P. Palstra and J. V. Planas (eds.), Swimming Physiology of Fish, 129 DOI: 10.1007/978-3-642-31049-2_6, Ó Springer-Verlag Berlin Heidelberg 2013 130 P. Domenici et al. 6.1 Introduction Water has a low capacitance for oxygen, air-saturated water only contains a few milligrams per litre of oxygen at normal atmospheric pressures. As a result, oxygen levels can be depleted quite easily by respiring organisms, especially in nutrient- rich environments with a large microbial biomass, or stagnant areas with poor vertical mixing. Oxygen depletion, hypoxia, is therefore a natural phenomenon. As such, fish have evolved to cope with hypoxia, although their relative tolerance depends on the species, its habitat and lifestyle. Hypoxia may occur over a variety of timescales, defined by Kemp et al. (2009) as (1) permanent, (2) persistent seasonal, both stratified and vertically mixed, (3) episodic and (4) diel. Hypoxia is also a common symptom of degraded water quality caused by nutrient pollution and eutrophication. Over the last few decades, eutrophication of coastal waters has been linked to increases in the frequency, duration and geographical extent of hypoxic events, which are recognised as important environmental problems globally (Diaz and Rosenberg 2008). Hypoxic events have the potential to significantly impact coastal fisheries (Diaz 2001). Shifts in spatial distribution and the structure of benthic and nekton assemblages can occur through direct mortality during extreme local events, especially of sluggish species, and through sublethal effects such as increased emigration of vagile species. Additionally, fish exposed to hypoxic conditions grow slower and produce fewer viable offspring (Petersen 1987; Plante et al. 1998; Dean and Richardson 1999; Smith and Able 2003; Taylor and Miller 2001). Changes in assemblage structure and loss of habitat can have bottom-up effects on food web structure such as losses in key prey species resulting in further ecological effects (Diaz 2001). Hypoxia may have profound effects on production efficiency of fish in culture, through its depressive effects on growth. Species differ greatly in their relative tolerance of hypoxia, as a function of the environment in which they have evolved. Thus, cyprinids that have evolved in slow-moving or static and warm waters, where hypoxia can develop, are known to be more tolerant of oxygen depletion than salmonids, which rarely encounter any hypoxia in their cool fast-flowing habitats. Oxygen levels are generally carefully monitored and controlled in modern commercial finfish aquaculture, except for some air-breathing species in south-east Asia (Lefevre et al. 2011). Hypoxia can, however, develop in sea cage aquaculture through oceanographic and eutrophic forces. Little is known about how it influences the behaviour of cultured fish (Oppedal et al. 2011). The current review therefore provides an opportunity to extrapolate what we know about how hypoxia affects fish swimming performance and behaviour to culture scenarios. The impact of hypoxia on aquatic ecosystems is modulated by the physiology and behaviour of the organisms (Kramer et al. 1997;Domenicietal.2007a, b;Chapman and McKenzie 2009). Knowledge of the processes that regulate the interactions between hypoxia and ecologically relevant variables, such as growth and survival, is fundamental for understanding and predicting the effects of such interactions, par- ticularly on fish in aquaculture. A number of physiological and behavioural effects are 6 The Effect of Hypoxia 131 observed at sublethal levels of hypoxia, which presumably mediate subsequent effects on fish activity and distribution (Domenici et al. 2007a, b; Chapman and McKenzie 2009). Fish can sense oxygen levels in the ventilatory water stream and in their blood and, when oxygen levels in these milieux decline, they engage a suite of physi- ological responses which, together, aim to improve oxygen uptake at the gills, transport in the blood and release at the tissues (Randall 1982; Burleson et al. 1992; Richards 2009). Nonetheless, the reduced oxygen availability in hypoxia limits the ability of fish to provide oxygen for metabolic activities, their aerobic metabolic scope (MS; Fry 1947, 1971; Claireaux et al. 2007). The effects of hypoxia on aerobic metabolism, and MS, can be modelled as shown in Fig. 6.1. The standard metabolic rate (SMR) is the minimal rate of oxygen uptake required to support essential maintenance functions in ectotherms. In hypoxia, fish can typically use physiological responses to maintain oxygen uptake at or above SMR down until a critical dissolved oxygen (DO) threshold, termed critical O2 partial pressure (Pcrit) or saturation (Scrit). Below this critical threshold, the fish is no longer able to support maintenance metabolism and its metabolic rate is dependent on the oxygen level in its external O2 environment (Fig. 6.1, Schurmann and Steffensen 1997). Whilst SMR provides for essential core function, all other activities such as growth, reproduction and swimming activities (the focus of this review), depend on an ability to increase oxygen uptake and delivery above and beyond SMR, and within the limits of aerobic metabolic scope (MS). MS was first defined by Fry (1947) as the difference between the maximum metabolic rate (MMR) and SMR (Chabot and Claireaux 2008; Claireaux et al. 2000). Maximum metabolic rate measured in fish swimming at the maximum sustained speed is also called active metabolic rate (AMR) by some authors (e.g. Schurmann and Steffensen 1997; Claireaux et al. 2000). Fish MMR is increasingly limited as hypoxia becomes progressively more severe (Fig. 6.1, Claireaux et al. 2000; Cook et al. 2011). Fish must balance multiple metabolic demands, and swimming is an energetically demanding process (Schurmann and Steffensen 1997). Thus, hypoxic limitations to MS may limit a fish’s ability to perform activities such as swimming. Such limitations to MS will also force the fish to make decisions about how to use the available oxygen. The manner by which fish use the available oxygen will become increasingly important as they approach Pcrit, because MS will eventually be exhausted (SMR = MMR at Pcrit, Fig. 6.1). Behavioural responses are, therefore, likely to be driven by the physiological effects of hypoxia (Lefrançois and Claireaux 2003; Fritsche and Nilsson 1989). It is essential that the fish exhibit a suitable behavioural response to an O2 restricted environment because this could have a profound effect on their survival. Hypoxia may therefore elicit changes in spontaneous activity, schooling and predator–prey interactions. These may differ depending upon the species and the severity of hypoxia. This chapter reviews the effects that hypoxia can have on fish swimming perfor- mance and swimming behaviours. We discuss aerobic swimming performance in which work under controlled (i.e. forced) speed tested the effect of hypoxia on sus- tained (aerobic) swimming using swim tunnel observations. The effect of hypoxia on 132 P. Domenici et al. Fig. 6.1 Conceptual overview of how hypoxia (low partial pressure of oxygen, PO2) affects the various rates of mass-specific O2 consumption (MO2) at set temperatures. SMR = standard metabolic rate; MMR = maximum metabolic rate; MS = metabolic scope; Pcrit = critical oxygen pressure where SMR = MMR. Concepts taken from Fry (1947), Claireaux et al. (2000), Schurmann and Steffensen (1997) and Cook et al. (2011) spontaneous activity, i.e. unforced aerobic activity, is discussed next. Effects on schooling are included because hypoxia may have effects on this behaviour, given that schooling and swimming performance are tightly linked from an energetic point of view (Weihs 1973; Herskin and
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Fisheries Centre
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 80 Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulman, Adib Saad, Kyrstn Zylich, Daniel Pauly and Dirk Zeller Year: 2015 Email: [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulmana, Adib Saadb, Kyrstn Zylicha, Daniel Paulya, Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada b President of Syrian National Committee for Oceanography, Tishreen University, Faculty of Agriculture, P.O. BOX; 1408, Lattakia, Syria [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Syria’s total marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach which accounted for all fisheries removals, including unreported commercial landings, discards, and recreational and subsistence catches. All unreported estimates were added to the official data, as reported by the Syrian Arab Republic to the United Nation’s Food and Agriculture Organization (FAO). Total reconstructed catch for 1950-2010 was around 170,000 t, which is 78% more than the amount reported by Syria to the FAO as their national catch. The unreported components added over 74,000 t of unreported catches, of which 38,600 t were artisanal landings, 16,000 t industrial landings, over 4,000 t recreational catches, 3,000 t subsistence catches and around 12,000 t were discards.
    [Show full text]
  • Age, Growth and Population Dynamics of Lemon Sole Microstomus Kitt(Walbaum 1792)
    Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland By Joan F. Hannan Masters Thesis in Fish Biology Galway-Mayo Institute of Technology Supervisors of Research Dr. Pauline King and Dr. David McGrath Submitted to the Higher Education and Training Awards Council July 2002 Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland Joan F. Hannan ABSTRACT The age, growth, maturity and population dynamics o f lemon sole (Microstomus kitt), captured off the west coast o f Ireland (ICES division Vllb), were determined for the period November 2000 to February 2002. The maximum age recorded was 14 years. Males o f the population were dominated by 4 year olds, while females were dominated by 5 year olds. Females dominated the sex ratio in the overall sample, each month sampled, at each age and from 22cm in total length onwards (when N > 20). Possible reasons for the dominance o f females in the sex ratio are discussed. Three models were used to obtain the parameters o f the von Bertalanfly growth equation. These were the Ford-Walford plot (Beverton and Holt 1957), the Gulland and Holt plot (1959) and the Rafail (1973) method. Results o f the fitted von Bertalanffy growth curves showed that female lemon sole o ff the west coast o f Ireland grew faster than males and attained a greater size. Male and female lemon sole mature from 2 years o f age onwards. There is evidence in the population o f a smaller asymptotic length (L«, = 34.47cm), faster growth rate (K = 0.1955) and younger age at first maturity, all o f which are indicative o f a decrease in population size, when present results are compared to data collected in the same area 22 years earlier.
    [Show full text]
  • 04-Bailly 669.Indd
    Scophthalmus Rafinesque, 1810: The valid generic name for the turbot, S. maximus (Linnaeus, 1758) [Pleuronectiformes: Scophthalmidae] by Nicolas BAILLY* (1) & Bruno CHANET (2) ABSTRACT. - In the past 50 years, the turbot is referred to either as Scophthalmus maximus (Linnaeus, 1758) or Psetta maxima (Linnaeus, 1758) in the literature. Norman (1931) had argued that the valid name for the turbot was Scophthalmus maximus. However, his recommendation was never universally accepted, and today the confusing situation exists where two generic names are still being used for this species. We address this issue by analysing findings from recently published works on the anatomy, molecular and morphological phylogenetic systematics, and ecology of scophthalmid fishes. The preponderance of evidence supports the strong recommendation to use Scophthalmus as the valid generic name for the tur- bot. Acceptance of this generic name conveys the best information available concerning the systematic relationships of this species, and also serves to simplify the nomenclature of scophthalmid flatfishes in publications on systematics, fisheries and aquaculture, fishery statistics, ichthyofaunal and field guides for the general public, and in various legal and conserva- tion-related documents. This paper reinforces the conclusions of Chanet (2003) with more arguments. RÉSUMÉ. - Scophthalmus Rafinesque, 1810: le nom de genre valide du turbot,S. maximus (Linnaeus, 1758) (Pleuronecti- formes: Scophthalmidae). Depuis 50 ans, le turbot est dénommé dans la littérature soit Scophthalmus maximus (Linnaeus, 1758), soit Psetta maxima (Linnaeus, 1758). Norman (1931) avait montré que le nom valide pour le turbot était Scophthalmus maximus. Cependant, sa recommandation ne fut jamais universellement appliquée, et aujourd’hui la situation reste confuse avec deux noms génériques en usage pour cette espèce.
    [Show full text]
  • Food Choice of Different Size Classes of Flounder (Platichthys Flesus ) In
    Food choice of different size classes of flounder ( Platichthys flesus ) in the Baltic Sea Jennie Ljungberg Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 30 hp till masterexamen, 2014 Biology Education Centre Supervisor: Bertil Widbom Table of Contents ABSTRACT ............................................................................................................................................ 3 INTRODUCTION ................................................................................................................................... 4 Flounders in the Baltic Sea .................................................................................................................. 5 The diet of flounders ........................................................................................................................... 6 Blue mussel (Mytilus edulis) ............................................................................................................... 7 Blue mussels in the Baltic Sea............................................................................................................. 8 The nutritive value of blue mussels ..................................................................................................... 9 The condition of flounders in the Baltic Sea ....................................................................................... 9 Aims .................................................................................................................................................
    [Show full text]
  • Capture-Based Aquaculture of Mullets in Egypt
    109 Capture-based aquaculture of mullets in Egypt Magdy Saleh General Authority for Fish Resources Development Cairo, Egypt E-mail: [email protected] Saleh, M. 2008. Capture-based aquaculture of mullets in Egypt. In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 109–126. SUMMARY The use of wild-caught mullet seed for the annual restocking of inland lakes has been known in Egypt for more than eight decades. The importance of wild seed collection increased with recent aquaculture developments. The positive experience with wild seed collection and high seed production costs has prevented the development of commercial mullet hatcheries. Mullet are considered very important aquaculture fish in Egypt with 156 400 tonnes produced in 2005 representing 29 percent of the national aquaculture production. Current legislation prohibits wild seed fisheries except under the direct supervision of the relevant authorities. In 2005, 69.4 million mullet fry were caught for both aquaculture and culture-based fisheries. A parallel illegal fishery exists, undermining proper management of the resources. The effect of wild seed fisheries on the wild stocks of mullet is not well studied. The negative effect of the activity is a matter of debate between fish farming and capture fisheries communities. Data on the capture of wild mullet fisheries shows no observable effect of fry collection on the catch during the last 25 years. DESCRIPTION OF THE SPECIES AND USE IN AQUACULTURE Species presentation Mullets are members of the Order Mugiliformes, Family Mugilidae. Mullets are ray- finned fish found worldwide in coastal temperate and tropical waters and, for some species, also in freshwater.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • I CHARACTERIZATION of the STRIPED MULLET (MUGIL CEPHALUS) in SOUTHWEST FLORIDA: INFLUENCE of FISHERS and ENVIRONMENTAL FACTORS
    i CHARACTERIZATION OF THE STRIPED MULLET (MUGIL CEPHALUS) IN SOUTHWEST FLORIDA: INFLUENCE OF FISHERS AND ENVIRONMENTAL FACTORS ________________________________________________________________________ A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the requirements for the degree of Master of Science ________________________________________________________________________ By Charlotte Marin 2018 ii APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Masters of Science ________________________________________ Charlotte A. Marin Approved: 2018 ________________________________________ S. Gregory Tolley, Ph.D. Committee Chair ________________________________________ Richard Cody, Ph.D. ________________________________________ Edwin M. Everham III, Ph.D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii ACKNOWLEDGMENTS I would like to dedicate this project to Harvey and Kathryn Klinger, my loving grandparents, to whom I can attribute my love of fishing and passion for the environment. I would like to express my sincere gratitude to my mom, Kathy, for providing a solid educational foundation that has prepared me to reach this milestone and inspired me to continuously learn. I would also like to thank my aunt, Deb, for always supporting my career aspirations and encouraging me to follow my dreams. I would like to thank my in-laws, Carlos and Dora, for their enthusiasm and generosity in babysitting hours and for always wishing the best for me. To my son, Leo, the light of my life, who inspires me every day to keep learning and growing, to set the best example for him.
    [Show full text]
  • Biology, Ecology and Culture of Grey Mullet (Mugilidae)
    CHAPTER 18 Stock Enhancement of Mugilidae in Hawaii (USA) Kenneth M. Leber,1,* Cheng-Sheng Lee,2 Nathan P. Brennan,1 Steve M. Arce,2 Clyde S. Tamaru,3 H. Lee Blankenship4 and Robert T. Nishimoto5 Introduction Aquaculture-based marine fi sheries enhancements have a long history, dating back to the late 19th century when releasing cultured fry into the marine environment was the principal fi shery management tool. Stocking fi sh eggs and larvae was regarded as the way to save what was generally perceived as a declining resource, the causes of which were not well understood. By the early decades of the 20th century, billions of unmarked, newly-hatched fry had been released into the coastal environments (Radonski and Martin 1986). In the United States, Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglejinus), pollack (Pollachius virens), winter fl ounder (Pseudopleuronectes americanus) and Atlantic mackerel (Scomber scombrus) were stocked (Richards and Edwards 1986). No attempt was made to evaluate stocking strategies and success was measured by numbers released rather than numbers surviving. By the early 1930s, after a half century of releases had produced no evidence of an enhancement impact (except for some salmonid stocking programs), stocking programs were largely curtailed in the US and harvest management was established as the principal means to manage marine fi sheries. In the 1980s, some states in the US began new stock enhancement programs, following advances in marine fi sh culture and fi sh tagging technologies. Most of these new programs were established primarily for research on the effi cacy of marine stock enhancement, with a goal of developing more effective stock enhancement strategies.
    [Show full text]
  • Mullets and the Impact of the Environmental Status of Burgas Bay on Their Populations
    Annual of Sofia University “St. Kliment Ohridski” Faculty of Biology Book 4 - Scientific Sessions of theFaculty of Biology 2019, volume 104, pp. 62-69 International Scientific Conference “Kliment’s Days”, Sofia 2018 MULLETS AND THE IMPACT OF THE ENVIRONMENTAL STATUS OF BURGAS BAY ON THEIR POPULATIONS RADOSLAVA BEKOVA1*, BOGDAN PRODANOV2, TODOR LAMBEV2 1 – Department of Marine Biology and Ecology, Institute of Oceanology–BAS, Varna, Bulgaria 2 - Department of Coastal Zone Dynamics, Institute of Oceanology–BAS, Varna, Bulgaria *Corresponding author: [email protected] Keywords: environmental assessment, mullets, population parameters, Burgas Bay Abstract: An ecosystem approach has been chosen for an assessment of the status of the populations of three mullet species in Burgas Bay. The complex data requirements for all three species and physicochemical parameters plus sediment are the basis for a comparative assessment of the population status of mullets in Burgas Bay. An assessment of the local anthropogenic impact was also made using hydrochemical analyses. The present study aims to extend and deepen the knowledge of the population- biological characteristics of three species of mullets (Mugil cephalus, Chelon auratus and Chelon saliens) from Burgas Bay by using an ecosystem scale research to determine the degree of contamination with biogenic substances and their impact on the mullet populations. INTRODUCTION Environmental changes due to anthropogenic factors affect all parts of the plant and animal world in inland waters, seas and oceans. The Black Sea is close to the so-called "red line" beyond which ecosystem degradation processes may become irreversible. Commercial fishing is the most unfavorable factor as it directly destroys a significant part of the populations of certain species, which in terms affects all other species that are in strictly specific relationships with the intensely exploited ones.
    [Show full text]
  • Mugil Cephalus (Linnaeus, 1758)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Mugil cephalus (Linnaeus, 1758) I. Identity V. Status And Trends a. Biological Features VI. Main Issues b. Images Gallery a. Responsible Aquaculture Practices II. Profile VII. References a. Historical Background a. Related Links b. Main Producer Countries c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Mugil cephalus Linnaeus, 1758 [Mugilidae] FAO Names: En - Flathead grey mullet, Fr - Mulet à grosse tête, Es - Pardete Biological features Body cilindrical, robust. Head broad, its width more than width of mouth cleft; adipose eyelid well developed, covering most of pupil; upper lip thin, without papillae, labial teeth of upper jaw small, straight, dense, usually in several rows; mouth cleft ending below posterior nostril. Two dorsal fins; the first with 4 spines; the second with 8-9 soft rays; origin of first dorsal fin nearer to snout tip than to caudal fin base; origin of second dorsal fin at vertical between a quarter and a half along anal fin base. Anal fin with 8 soft finrays. Pectoral fins with 16-19 rays; pectoral axillary about one-third length of fin. Pyloric caeca 2. Scales in leteral series 36-45. Colour back blue/green, flanks and belly pale or silvery; scales on back and flanks usually streaked to form longitudinal stripes; dark pectoral axillary blotch. View FAO FishFinder Species fact sheet Images gallery FAO Fisheries and Aquaculture Department Collecting wild flathead grey mullet fry from the Mediterranean shore of Egypt Mugil cephalus nursery pond, near Port Said, Egypt Catch pond serving two nursery ponds Harvesting flathead grey mullet Profile Historical background Flathead grey mullet has been farmed for centuries in extensive and semi-intensive ponds in many countries.
    [Show full text]
  • Atlas of North Sea Fishes
    ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 194 Atlas of North Sea Fishes Based on bottom-trawl survey data for the years 1985—1987 Ruud J. Knijn1, Trevor W. Boon2, Henk J. L. Heessen1, and John R. G. Hislop3 'Netherlands Institute for Fisheries Research, Haringkade 1, PO Box 6 8 , 1970 AB Umuiden, The Netherlands 2MAFF, Fisheries Laboratory, Lowestoft, Suffolk NR33 OHT, England 3Marine Laboratory, PO Box 101, Victoria Road, Aberdeen AB9 8 DB, Scotland Fish illustrations by Peter Stebbing International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2—4, DK-1261 Copenhagen K, Denmark September 1993 Copyright ® 1993 All rights reserved No part of this book may be reproduced in any form by photostat or microfilm or stored in a storage system or retrieval system or by any other means without written permission from the authors and the International Council for the Exploration of the Sea Illustrations ® 1993 Peter Stebbing Published with financial support from the Directorate-General for Fisheries, AIR Programme, of the Commission of the European Communities ICES Cooperative Research Report No. 194 Atlas of North Sea Fishes ISSN 1017-6195 Printed in Denmark Contents 1. Introduction............................................................................................................... 1 2. Recruit surveys.................................................................................. 3 2.1 General purpose of the surveys.....................................................................
    [Show full text]