<<

The VECRO hypothesis

Samir D. Mathur The Ohio State University

Thanks to everyone for making possible this wonderful conference in these difficult circumstances

(arxiv: 1703.03042,1705.06407, 1812.11641, 1905.12004, 2001.11057) The information paradox total ,total n n ,total n n ,total n n total entanglement 1 5 1 5 1 5 black n = (J (2n 2)) (J (2n 4)) . . .to(talJ 2 ) ,total 1 n1n5 ,total n1n5(5) ,total n1n5 total | ⇧ n = (J (2n 2)| )⇧ (J (2n 4)) . . . (J 2 ) 1 (5) | ⇧ | ⇧ hole A = S = 2⇥⌥n1n2n3 A 4G = S = 2⇥⌥n1n2n3 4G normal 1 1 2 E = + = 1 1 1 2 body nR nR nR E (=0 0 + 1 1=)+O(✏) p | in|Ri nR| i| i nR 2 2 E = 2 nR E = time nR S = ln(1) = 0 (6) Fuzzballs: Consider bound statesS = ln(1) of branes= 0 in : (6) S = 2⌥2⇥⌥n1n2 (7) S = 2⌥2⇥⌥n1n2 (7) S = 2⇥⌥n1n2n3 (8) weak coupling Sstrong= 2⇥⌥ ncoupling1n2n3 (8) S = 2⇥⌥n1n2n3n4 (9) S = 2⇥⌥n1n2n3n4 (9) n1 n5 n ⇤ ⇤ n1 n5 n 1 ⇤ ⇤ n 4 lp 1 ⇤ n 4 lp 1 ⇤ n 2 lp 1 ⇤ n 2 lp The size of the bound state grows ⇤ n lp with the number of branes, and a ⇤ n lp 1 ⇤ M9,1 M4,1 K3 S 1 horizon never forms ⌅ ⇥ ⇥ M9,1 M4,1 K3 S A ⌅ ⇥ ⇥ n1n5 J S A 4G ⇤ ⇤ n1n5 J S 4G ⇤ ⇤ A ⌥n1n5 S A 4G ⇤ ⇤ ⌥n1n5 S 4G ⇤ ⇤ e2⇥2⇥n1np e2⇥2⇥n1np

Q1 1 + Q1 r2 1 + r2 Qp 1 + Qp r2 1 + r2 e2⇥2⇥n1n5 e2⇥2⇥n1n5 i(t+y) ikz w = e w˜(r, , ⇤) i(t+y) ikz (10) w = e w˜(r, , ⇤) (10) (2) i(t+y) ikz ˜(2) BMN = e BMN (r, , ⇤) , (2) i(t+y) ikz ˜(2)(11) BMN = e BMN (r, , ⇤) , (11)

2 2 In the fuzzball paradigm, black hole microstates do not have a horizon; they radiate like normal objects from their surface

Thus we do not have any information puzzle

But we will learn a lot by asking a more refined question: Where and why does the semiclassical approximation break down ?

?? ??

We will assume that there are no large violations of causality in our theory No !! Then, how does the semiclassical collapse get replaced by fuzzball formation ?

This is the central aspect of the paradox from the viewpoint of a relativist. (This is a qualitative question, so our discussion will also be qualitative)

AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF49V7Ae0oWy2k3TpZhN3N0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28HoZua3n1BpnsgHM07Rj2kkecgZNVbq3PeiiIh+2i9X3Ko7B1klXk4qkKPRL3/1BgnLYpSGCap113NT40+oMpwJnJZ6mcaUshGNsGuppDFqfzK/d0rOrDIgYaJsSUPm6u+JCY21HseB7YypGeplbyb+53UzE177Ey7TzKBki0VhJohJyOx5MuAKmRFjSyhT3N5K2JAqyoyNqGRD8JZfXiWti6pXq17e1Sr1Wh5HEU7gFM7Bgyuowy00oAkMBDzDK7w5j86L8+58LFoLTj5zDH/gfP4AiOSPmw== AAAB+HicbVDJSgNBEO1xjXHJqEcvjUGIlzAjcTkGRPAYlywwGYaeTk3SpGehu0eMQ77EiwdFvPop3vwbO8kcNPFBweO9Kqrq+QlnUlnWt7G0vLK6tl7YKG5ube+UzN29loxTQaFJYx6Ljk8kcBZBUzHFoZMIIKHPoe0PLyd++wGEZHF0r0YJuCHpRyxglCgteWbp6jFx7rzMh+G4cnvsembZqlpT4EVi56SMcjQ886vbi2kaQqQoJ1I6tpUoNyNCMcphXOymEhJCh6QPjqYRCUG62fTwMT7SSg8HsdAVKTxVf09kJJRyFPq6MyRqIOe9ifif56QquHAzFiWpgojOFgUpxyrGkxRwjwmgio80IVQwfSumAyIIVTqrog7Bnn95kbROqnatenpTK9fP8jgK6AAdogqy0Tmqo2vUQE1EUYqe0St6M56MF+Pd+Ji1Lhn5zD76A+PzBwA9kqE= We will argue for a picture of the quantum gravity vacuum which will resolve this puzzle

We call this picture the VECRO hypothesis VECRO: Virtual Extended Compression-Resistant Objects

(a) On shell microstates are Extended objects (fuzzballs) with size R 2GM + l ⇠ p

(b) Thus the quantum gravity vacuum must contain Virtual fluctuations corresponding to these objects

(c) The fluctuations to a fuzzball type configuration with R l will be highly p suppressed, but there are Exp [ S bek ( R )] fuzzball states of this size, so there will be a large phase space of such configurations.

We assume that the largeness of this phase space will offset the suppression, so that these vecro fluctuations are an important component of the quantum gravity vacuum The VECRO hypothesis: The quantum gravity vacuum contains an important component consisting of virtual fuzzball type configurations.

This component plays a crucial role in situations where a horizon is predicted by the semiclassical theory, and modifies the dynamics to resolve the puzzles that arise

(a) Explains how a collapsing shell turns into fuzzballs while maintaining causality of the underlying theory

(b) Gives a resolution of the bags of gold problem

(c) Are the Rindler, Black hole, Cosmological horizons similar? (No, differ in vecro flictuations)

(d) Can impact cosmological issues like inflation, cosmological constant, bubble nucleation Fuzzballs

Avery, Balasubramanian, Bena, Bobev, Bossard, Carson, Ceplak, Chowdhury, de Boer, Gimon, Giusto, Guo, Hampton, Heidmann, Jejjala, Katmadas, Kanitscheider, Keski-Vakkuri, Kraus, Levi, Lunin, Madden, Maldacena, Maoz, Martinec, Mayerson, Niehoff, Park, Peet, Potvin, Puhm, Ross, Ruef, Rychkov, Saxena, Shigemori, Simon, Skenderis, Srivastava, Taylor, Titchner, Turton, Vasilakis, Wang, Warner ... and many others total ,total n1n5 ,total n1n5 ,total n1n5 total n = (J (2n 2)) (J (2n 4)) . . . (J 2 ) 1 (5) | ⇧ | ⇧ total ,total n1n5 ,total n1n5 ,total n1n5 total n = (J (2n 2)) (J (2n 4)) . . . (J 2 ) 1 (5) A | ⇧ | ⇧ = S = 2⇥⌥n n n 4G 1 2 3 A = S = 2⇥⌥n n n 4G 1 2 3 1 1 2 E = + = 1 1 2 nR nR nR E = + = 2 nR nR nR E = 2 nR E = S = ln(1) = 0 nR(6) Consider the bound states of D1,S = ln(1)D5, P= charges.0 (6) S = 2⌥2⇥⌥n1n2 (7) S = 2⌥2⇥⌥n1n2 (7) S =weak2⇥⌥n coupling1n2n3 strong coupling(8) S = 2⇥⌥n1n2n3 (8) S = 2⇥⌥n1n2n3n4 (9) S = 2⇥⌥n1n2n3n4 (9)

n1 n5 n ⇤ ⇤ n1 n5 n 1 ⇤ ⇤ n 4 lp 1 ⇤ n 4 lp 1 ⇤ n 2 l 1 p n 2 l ⇤ ⇤ p n lp The size of the bound state grows ⇤ n lp 1 ⇤ with the number of branes, and a M9,1 M4,1 K3 S M M K3 S1 ⌅ ⇥ ⇥ 9,1 ⌅ 4,1 ⇥ ⇥ horizon never forms A A n1n5 J S n n J S 4G ⇤ ⇤ 4G ⇤ 1 5 ⇤ fuzzball A A ⌥n n S 1 1 5 2 4 ⌥3 n1n5 S 4G ⇤ ⇤ pn1n5np g 4↵G0 ⇤ ⇤ D RH (SDM hep-th/9706151) 2⇥2 n n VL 2⇥2 n n e ⇥ 1 p ⇠ " e# ⇥⇠1 p

Q Q1 1 + 1 1 + Many examplesr2 of string solutions haver2 been constructed, and in each case we have found Qthat the solution has no horizonQ p(Large program by Bena, Warner et al) 1 + p 1 + r2 r2 (All 2 charge extremal states, many families of 3 and 4 charge extremal, some families of 2⇥2⇥n1n5 nonextremal,e2⇥2⇥n1n5 radiation from near eextremal matches expectations exactly …)

i(t+y) ikz i(t+y) ikz w = e w˜(r, , ⇤) (10) w = e w˜(r, , ⇤) (10) (2) i(t+y) ikz ˜(2) (2) i(t+y) ikz ˜(2) BMN = e BMN (r, , ⇤) , (11) BMN = e BMN (r, , ⇤) , (11)

2 2 Fuzzball conjecture: No microstate in string theory will have a traditional horizon which has a vacuum region in its vicinity

1 ( 0 0 + 1 1 )+O(✏) state of radiated quantum depends p2 | i| i | i| i on details at the surface

How did we bypass the various no-hair theorems?

There are special features of a theory like string theory which has extra dimensions/ extended objects/Chern-Simmons terms etc. (Gibbons+Warner 13)

What about Buchdahl theorem? Fluid sphere with decreasing outwards must collapse if 9 R< M 4 Toy model: Euclidean Schwarzschild plus time (‘neutral fuzzball’)

Hole cut out of space

2 2 2 r0 2 dr 2 2 2 2 ds = dt +(1 )d⌧ + + r (d✓ +sin ✓d ) , 0 ⌧ < 4⇡r0 r 1 r0  r We can reduce on the direction ⌧ to get a scalar field in 3+1 gravity. 1 The stress tensor is the standard one for a scalar field T = gE , µ⌫ ,µ ,⌫ 2 µ⌫ , Why does this shell of scalar field not collapse inwards ?

2 µ 3r0 T ⌫ = diag ⇢,pr,p✓,p = diag f,f, f, f , f = r 3 { } { } 8r4(1 0 ) 2 r Pressure diverges at tip of cigar so a Buchdahl type analysis would call this a singularity

But the 4+1 dimensional solution is completely regular ( g tt never changes sign, so there is no horizon ) In general constructing a fuzzball needs all the details of string theory: extra dimensions, strings, branes, fluxes, …

But for our present purposes we can keep in mind a heuristic picture of the fuzzball where we have many the holes (bubbles) in space that are linked together in a way that they support each other … The causality puzzle ?? ??

Shell passes through horizon Light cones point inwards Collapsing shell with all curvatures low inside horizon

We will assume: If curvatures are low throughout a spacetime region, then causality holds to leading order. Here causality means that signals do not propagate outside the light cone, and that there are no nonlocal interactions between points that are spacelike separated.

How do we form the fuzzball?

No large effects ??

A strong constraint comes from considering partial shells AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexKRY8FLx6r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HNzO//cS04bF6sJOEBZIMFY84JdZJnZ7hEt/3R/1yxat6c+BV4uekAjka/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDN753iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrPn8YBrRq2YOEKo5u5WTEdEE2pdRCUXgr/88ippXVT9WvXyrlap1/I4inACp3AOPlxBHW6hAU2gIOAZXuENPaIX9I4+Fq0FlM8cwx+gzx+UPo+i Shell collapsing (a) black hole (b) Partial shell continues in; rest at speed of light formation stops; expect no black hole formation

If we only consider small scale vacuum fluctuations we will be trapped by the causality problem

Virtual fuzzballs of radius R can ‘feel Aichelburg-Sexl shock wave; vacuum ⇠ h fluctuations return to original form around’ the scale of the collapsing shell and know when a hole should form after wave Resolution of the causality puzzle under the VECRO hypothesis AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CgiksAjaWEcyHJGfY2+wlS3b3jt09IRz5FTYWitj6c+z8N26SKzTxwcDjvRlm5gUxZ9q47reT29jc2t7J7xb29g8Oj4rHJ20dJYrQFol4pLoB1pQzSVuGGU67saJYBJx2gsnN3O88UaVZJO/NNKa+wCPJQkawsdJDP2aDyWPl2h0US27ZXQCtEy8jJcjQHBS/+sOIJIJKQzjWuue5sfFTrAwjnM4K/UTTGJMJHtGepRILqv10cfAMXVhliMJI2ZIGLdTfEykWWk9FYDsFNmO96s3F/7xeYsK6nzIZJ4ZKslwUJhyZCM2/R0OmKDF8agkmitlbERljhYmxGRVsCN7qy+ukXSl71XLtrlpq1LM48nAG53AJHlxBA26hCS0gIOAZXuHNUc6L8+58LFtzTjZzCn/gfP4A6aWPzQ== VECRO: Virtual Extended Compression-Resistant Objects

(A) What is a virtual fluctuation ?

V ( ) k Virtual For a free scalar field, 'Virtual fluctuation fluctuations' are just the part of the vacuum wavefunctional 2 that are 'under the potential ⇡k < 0 barrier' Amplitude of a k Fourier mode (B) Suppose this scalar arises as the size of a compact circle

But we can also have large Small fluctuations of the scalar are fluctuations that lead to fuzzball described by the above field type configurations fluctuations (C) Let us think of fuzzball type configurations are bound states of such local structures

How do bound states of the theory show up in the potential?

+ e e

bound states (An on-shell positronium state is orthogonal to the vacuum) lowering due to bound virtual states fluctuations Bound states are manifested as a lowering of the potential over appropriate regions of wider spread of configuration space vacuum wavefunctional

configuration space (D) The fluctuation to any large fuzzball configuration is highly suppressed:

S ET P e e ⇠ ⇠ d 2 d 1 R R E M d 1 , T R S ⇠ ⇠ lp ⇠ ⇠ lp ✓ ◆ But there are a very large number of fuzzballs: d 1 eSbek A R , S N ⇠ bek ⇠ G ⇠ l ✓ p ◆ Thus we can have P 1 ; i.e., the suppression is offset by the large degeneracy N ⇠ fuzzball type potential configurations semiclassical (vecros) configurations

The part of the vacuum wavefunctional ‘under the barrier’ is significant even for large vecros

AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2J6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx4feuFcquxV3DrJKvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4vd1PCEshEd8I6likbc+Nn81Ck5t0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjd+JlSSIldssShMJcGYzP4mfaE5QzmxhDIt7K2EDammDG06RRuCt/zyKmleVrxq5eq+Wq5V8zgKcApncAEeXEMN7qAODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wc4wo25 AAAB/XicbVDLSgMxFM3UV62v8bFzEyxC3ZQZqeiyoIIboYp9QGcYMmnahiaZIckU6lD8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nvCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5DRYnEpI4jFslWiBRhVJC6ppqRViwJ4iEjzXBwOfGbQyIVjcSDHsXE56gnaJdipI0U2AfeFWEawWvoKcrhbek+GJ4EdtEpO1PAReJmpAgy1AL7y+tEOOFEaMyQUm3XibWfIqkpZmRc8BJFYoQHqEfahgrEifLT6fVjeGyUDuxG0pTQcKr+nkgRV2rEQ9PJke6reW8i/ue1E9298FMq4kQTgWeLugmDOoKTKGCHSoI1GxmCsKTmVoj7SCKsTWAFE4I7//IiaZyW3Ur57K5SrFayOPLgEByBEnDBOaiCG1ADdYDBI3gGr+DNerJerHfrY9aas7KZffAH1ucPPTyTwg== AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2J6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx4feuFcquxV3DrJKvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4vd1PCEshEd8I6likbc+Nn81Ck5t0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjd+JlSSIldssShMJcGYzP4mfaE5QzmxhDIt7K2EDammDG06RRuCt/zyKmleVrxq5eq+Wq5V8zgKcApncAEeXEMN7qAODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wc4wo25 AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQD5ZEKnosePFYxX5AG8pmM2mXbjZxd1Mopb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zM8xPOlHacbyu3tr6xuZXfLuzs7u0fFA+PmipOJcUGjXks2z5RyJnAhmaaYzuRSCKfY8sf3s781gilYrF41OMEvYj0BQsZJdpIXtm96AbINTl/6I16xZJTceawV4mbkRJkqPeKX90gpmmEQlNOlOq4TqK9CZGaUY7TQjdVmBA6JH3sGCpIhMqbzI+e2mdGCewwlqaEtufq74kJiZQaR77pjIgeqGVvJv7ndVId3ngTJpJUo6CLRWHKbR3bswTsgEmkmo8NIVQyc6tNB0QSqk1OBROCu/zyKmleVtxq5eq+WqpVszjycAKnUAYXrqEGd1CHBlB4gmd4hTdrZL1Y79bHojVnZTPH8AfW5w9sAZEy AAACCHicbVDJSgNBEO2JW4xb1KMHG4PgQcKMxOUY8OIxglkgE0JPT03SpGehu0YIId68+CtePCji1U/w5t/YSeagiQ8KHu9VUVXPS6TQaNvfVm5peWV1Lb9e2Njc2t4p7u41dJwqDnUey1i1PKZBigjqKFBCK1HAQk9C0xtcT/zmPSgt4ugOhwl0QtaLRCA4QyN1i4euB8hcLULqnNIHA9cHiazLZ1q3WLLL9hR0kTgZKZEMtW7xy/VjnoYQIZdM67ZjJ9gZMYWCSxgX3FRDwviA9aBtaMRC0J3R9JExPTaKT4NYmYqQTtXfEyMWaj0MPdMZMuzreW8i/ue1UwyuOiMRJSlCxGeLglRSjOkkFeoLBRzl0BDGlTC3Ut5ninE02RVMCM78y4ukcVZ2KuXz20qpepHFkScH5IicEIdckiq5ITVSJ5w8kmfySt6sJ+vFerc+Zq05K5vZJ39gff4A0XKZLQ== AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2J6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx4feuFcquxV3DrJKvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4vd1PCEshEd8I6likbc+Nn81Ck5t0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjd+JlSSIldssShMJcGYzP4mfaE5QzmxhDIt7K2EDammDG06RRuCt/zyKmleVrxq5eq+Wq5V8zgKcApncAEeXEMN7qAODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wc4wo25 (E) Compression-Resistance: Fuzzball configurations are resistant to compression

Equation of state p = ⇢ is stiffest allowed by causality

(Sasakura 99, Banks+Fischler 01, Veneziano 03, SDM+Masoumi 14, Quintin, Brandenberger, Gasperini, Veneziano 18)

Compressing a vecro of radius R v by a factor of order unity gives E M(R ) ⇠ v i.e. the goes up by order the black hole mass for radius Rv

Heuristic model:

d 2 Rv 2 ⇡ U(Rv, )= sin ( ), c < < c G 2 c Rv (1 )Rv 1, 1 ⇠ c ⇠

Thus we have arrived at a qualitative picture for the behavior of these vecro fluctuations

A star has a weak gravitational pull, so the vecro compresses slightly and stabilizes. This distortion of the wavefunctional is included in the Einstein action dynamics

But now we have to consider what the vecro singularity fluctuations are doing

Inside the horizon, the light cones point inwards, Traditional so a vecro must keep on compressing picture (i.e., it cannot stabilize)

An order unity compression of the vecro Dust distorts the wavefunctional to the point where ball vecros turn into onshell fuzzballs

AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVih4LIngRKtgPaJeSTbNtaJINSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZFynOjPX9b6+wtr6xuVXcLu3s7u0flA+PWiZJNaFNkvBEdyJsKGeSNi2znHaUplhEnLaj8c3Mbz9RbVgiH+1E0VDgoWQxI9g6qX3bM0yg+3654lf9OdAqCXJSgRyNfvmrN0hIKqi0hGNjuoGvbJhhbRnhdFrqpYYqTMZ4SLuOSiyoCbP5uVN05pQBihPtSlo0V39PZFgYMxGR6xTYjsyyNxP/87qpja/DjEmVWirJYlGccmQTNPsdDZimxPKJI5ho5m5FZIQ1JtYlVHIhBMsvr5LWRTWoVS8fapV6LY+jCCdwCucQwBXU4Q4a0AQCY3iGV3jzlPfivXsfi9aCl88cwx94nz+ftI8R AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4KrulogcPBS8eK9gPaNeSTbNtaJINSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZFynOjPX9b29tfWNza7uwU9zd2z84LB0dt0ySakKbJOGJ7kTYUM4kbVpmOe0oTbGIOG1H49uZ336i2rBEPtiJoqHAQ8liRrB1Urun2GP1xu+Xyn7FnwOtkiAnZcjR6Je+eoOEpIJKSzg2phv4yoYZ1pYRTqfFXmqowmSMh7TrqMSCmjCbnztF504ZoDjRrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhUqaWSLBbFKUc2QbPf0YBpSiyfOIKJZu5WREZYY2JdQkUXQrD88ippVStBrXJ5XyvXa3kcBTiFM7iAAK6gDnfQgCYQGMMzvMKbp7wX7937WLSuefnMCfyB9/kDZmeO6w== AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4KruloicpePFYwX5Au5Zsmm1Dk2xIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e2vrG5tb24Wd4u7e/sFh6ei4ZZJUE9okCU90J8KGciZp0zLLaUdpikXEaTsa38789hPVhiXywU4UDQUeShYzgq2T2j3FHqs3fr9U9iv+HGiVBDkpQ45Gv/TVGyQkFVRawrEx3cBXNsywtoxwOi32UkMVJmM8pF1HJRbUhNn83Ck6d8oAxYl2JS2aq78nMiyMmYjIdQpsR2bZm4n/ed3UxtdhxqRKLZVksShOObIJmv2OBkxTYvnEEUw0c7ciMsIaE+sSKroQguWXV0mrWglqlcv7Wrley+MowCmcwQUEcAV1uIMGNIHAGJ7hFd485b14797HonXNy2dO4A+8zx9pcY7t on shell fuzzball

The picture of collapse under the Vecro hypothesis

In terms of potential graphs: potential rises for large vecros

potential vecro fluctuations

wavefunction decays here

The wavefunctional becomes oscillatory ( ⇡ 2 > 0 ) instead of decaying ( ⇡ 2 < 0 ) over vecro configurations of energy E M , signalling the transition to on-shell fuzzballs ⇠ Illustrative model: The Schwinger effect E~ E~

+ e e + e e _ _ + +

d eEd < 2mc2 eEd > 2mc2

Let there be N 1 flavors of charged particles. 2mc2 The vacuum is highly polarized for plate separations d< eE A person ignoring this polarizations will be 2mc2 surprised at the cascade of on-shell particles for d> eE

Large degeneracy of possible vecro fluctuations

Cascade to on-shell fuzzballs upon unbounded compression in a closed trapped surface Cosmology The black hole has a closed trapped surface. An expanding cosmology has anti-trapped surfaces

cannot have such vecros

number density of vecros Minkowski space

Flat space has vecros with

0

AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcGiURG9cbbtMtgNaJV5IGlOiM61+jSUxSQaUhHGs99NzE+BlWhhFOF7VRqmmCyQxP6dBSiQXVflbcukAXVpmgMFa2pEGF+nsiw0LruQhsp8Am0qteLv7nDVMT3voZk0lqqCTLRWHKkYlR/jiaMEWJ4XNLMFHM3opIhBUmxsZTsyF4qy+vk95V02s1rx9ajXarjKMKZ3AOl+DBDbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPHxHqjjk= AAAB7nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXKnosePFYwX5Au5Rsmm1Ds9mQZIWy9Ed48aCIV3+PN/+NabsHbX0w8Hhvhpl5oRLcWM/7RoWNza3tneJuaW//4PCofHzSNkmqKWvRRCS6GxLDBJesZbkVrKs0I3EoWCec3M39zhPThify0U4VC2IykjzilFgnddrVvhrzy0G54tW8BfA68XNSgRzNQfmrP0xoGjNpqSDG9HxP2SAj2nIq2KzUTw1ThE7IiPUclSRmJsgW587whVOGOEq0K2nxQv09kZHYmGkcus6Y2LFZ9ebif14vtdFtkHGpUsskXS6KUoFtgue/4yHXjFoxdYRQzd2tmI6JJtS6hEouBH/15XXSvqr59dr1Q73SqOdxFOEMzqEKPtxAA+6hCS2gMIFneIU3pNALekcfy9YCymdO4Q/Q5w+CQo7+ Bubble nucleation: V ()

Creates a de Sitter Gives flat cosmology spacetime

de Sitter spacetime

bubble The speed of the bubble wall approaches R the speed of light for R wall !1

flat spacetime

Energy from potential drop is proportional to volume, V R3 R2 while energy of bubble wall is proportional to area 0 ⇠ For R we get , v 1 !1 !1 ) !

AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hV2J6DHgxWME85BkCbOTSTJkZnaZ6RXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bNk4N4w0Wy9i0I2q5FJo3UKDk7cRwqiLJW9H4dua3nrixItYPOEl4qOhQi4FgFJ30iN0hOlORXqnsV/w5yCoJclKGHPVe6avbj1mquEYmqbWdwE8wzKhBwSSfFrup5QllYzrkHUc1VdyG2fzgKTl3Sp8MYuNKI5mrvycyqqydqMh1Kooju+zNxP+8ToqDmzATOkmRa7ZYNEglwZjMvid9YThDOXGEMiPcrYSNqKEMXUZFF0Kw/PIqaV5Wgmrl6r5arlXzOApwCmdwAQFcQw3uoA4NYKDgGV7hzTPei/fufSxa17x85gT+wPv8Aby3kFQ= AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWih4LXjxWsR/QLiWbZtvQJLskWaEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNObud+54lpw2P1aKcJCyQZKR5xSqyTOn3DJa49DMoVr+otgNeJn5MK5GgOyl/9YUxTyZSlghjT873EBhnRllPBZqV+alhC6ISMWM9RRSQzQbY4d4YvnDLEUaxdKYsX6u+JjEhjpjJ0nZLYsVn15uJ/Xi+10U2QcZWklim6XBSlAtsYz3/HQ64ZtWLqCKGau1sxHRNNqHUJlVwI/urL66Rdq/r16tV9vdKo53EU4QzO4RJ8uIYG3EETWkBhAs/wCm8oQS/oHX0sWwsonzmFP0CfP4rVjwM= AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48V7Ac0oUy2m3bpbhJ2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgsesbbgRrJcqhjIUrBtO7uZ+94kpzZP40UxTFkgcxTziFI2VfH+EUqKvuSTeoFpz6+4CZJ14BalBgdag+uUPE5pJFhsqUOu+56YmyFEZTgWbVfxMsxTpBEesb2mMkukgX9w8IxdWGZIoUbZiQxbq74kcpdZTGdpOiWasV725+J/Xz0x0G+Q8TjPDYrpcFGWCmITMAyBDrhg1YmoJUsXtrYSOUSE1NqaKDcFbfXmddK7qXqN+/dCoNRtFHGU4g3O4BA9uoAn30II2UEjhGV7hzcmcF+fd+Vi2lpxi5hT+wPn8AXAakUE= But now we must ask about the vecro fluctuations … de Sitter 1 space Vecros have radius Rv . H bubble R wall flat space needs Rv

But to make a vecro of radius R needs a time t & 2R R t & Light crossing time 2R ⇠

1 Thus the flat space region can only expand with v . This implies 1 . 2 ⇠

3 2 Thus we cannot get the energy balance V 0 R R where all the energy of the bubble is in the bubble wall ⇠ Energy distributes throughout the bubble instead of staying in the wall

R

One difficulties with early studies of bubble nucleation was that energy stayed in bubble walls; so the vecro effects may change the dynamics in a way that is relevant to cosmology … SUMMARY AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8SNmVih4LXrwIFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZFyaCG+t532hldW19Y7OwVdze2d3bLx0cNo1KNWUNqoTS7ZAYJrhkDcutYO1EMxKHgrXC0c3Ubz0xbbiSD3acsCAmA8kjTol1UtP3uuf4rlcqexVvBrxM/JyUIUe9V/rq9hVNYyYtFcSYju8lNsiItpwKNil2U8MSQkdkwDqOShIzE2Szayf41Cl9HCntSlo8U39PZCQ2ZhyHrjMmdmgWvan4n9dJbXQdZFwmqWWSzhdFqcBW4enruM81o1aMHSFUc3crpkOiCbUuoKILwV98eZk0Lyp+tXJ5Xy3XqnkcBTiGEzgDH66gBrdQhwZQeIRneIU3pNALekcf89YVlM8cwR+gzx/w+o4G The small corrections theorem: This inequality makes the information puzzle precise

Suppose we make two assumptions:

Horizon (a) c b

c b 1 ( 0 0 + 1 1 ) p2 | b| c | b| c 1 ( 0 0 + 1 1 )+✏ 1 ( 0 0 1 1 ) p2 | ⇥b| ⇥c | ⇥b| ⇥c k p2 | ⇥b| ⇥c | ⇥b| ⇥c ( ✏ < ✏ 1 ) | k| ⌧

(b) Assume radiated quanta are not modified once they are far from the hole

No further modification (this is what happens for burning paper) 10 M

AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV2J6DHgxWME84BkCbOTTjJkdmadmRXCkp/w4kERr/6ON//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisa3M7/1hNpwJR/sJMEwpkPJB5xR66R2FxPDhZK9Utmv+HOQVRLkpAw56r3SV7evWBqjtExQYzqBn9gwo9pyJnBa7KYGE8rGdIgdRyWN0YTZ/N4pOXdKnwyUdiUtmau/JzIaGzOJI9cZUzsyy95M/M/rpHZwE2ZcJqlFyRaLBqkgVpHZ86TPNTIrJo5Qprm7lbAR1ZRZF1HRhRAsv7xKmpeVoFq5uq+Wa9U8jgKcwhlcQADXUIM7qEMDGAh4hld48x69F+/d+1i0rnn5zAn8gff5A0szkBo= AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF09SwX5AG8pmu0nXbnbD7kYoof/BiwdFvPp/vPlv3KY5aOuDgcd7M8zMCxLOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXoA15UzQtmGG016iKI4DTrvB5Gbud5+o0kyKBzNNqB/jSLCQEWys1LkbRBHyhtWaW3dzoFXiFaQGBVrD6tdgJEkaU2EIx1r3PTcxfoaVYYTTWWWQappgMsER7VsqcEy1n+XXztCZVUYolMqWMChXf09kONZ6Gge2M8ZmrJe9ufif109NeO1nTCSpoYIsFoUpR0ai+etoxBQlhk8twUQxeysiY6wwMTagig3BW355lXQu6l6jfnnfqDUbRRxlOIFTOAcPrqAJt9CCNhB4hGd4hTdHOi/Ou/OxaC05xcwx/IHz+QOhLY55 AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWat71yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqaV9UvVr1slmr1Gt5HEU4gVM4Bw+uoA630IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AaTzjMw= not have, until recently, a construction of this hair, but many of them were still not worried about Hawking’s paradox. The reason was based on the following misconception. Suppose the entanglement horizon wasThen a the place entanglement with ‘normal will keep physics’, growing and let us include a small correction, order 1 Hawking ⇧ to the state of each created pair. The number of pairs N is very large, so it might be that SN+1 >SN +ln2 2✏ suitable choices of these small corrections would lead to a situation wherewithSent smalldoes decrease corrections in the manner expected of a normal(SDM body. 0909.1038)

A priori, it is not wrong to think that small corrections might cause Sent to decrease. SupposeWhy the entangledis this worth pair proving? at the first step is 1 ( 0 0 + 1 1 ). At theN next step we ⇥2 | ⌃b1 | ⌃c1 | ⌃b1 | ⌃c1 can haveOverall the state state after two emissions 1 = 0 0 [(1 + ) 0 0 +(1 ) 1 1 ] | ⌃ 2 | ⌃b1 | ⌃c1 1 | ⌃b2 | ⌃c2 1 | ⌃b2 | ⌃c2 + 1 1 [(1 + ) 0 0 +(1 ) 1 1 ] (2.1) | ⌃b1 | ⌃c1 1 | ⌃b2 | ⌃c2 1 | ⌃b2 | ⌃c2 After N steps of emission, there are 2 N correction terms ⇥ Note that the correction at each step can depend⇠ on everything in the hole at all earlier steps; Since , maybe even with a small the corrections cumulate to modify N the only requirementN is1 that the correction be small:✏ 1 < , < .Wehave 2 correction Hawking’s leading order result and encode ‘subtle’| | changes| 1 in| the radiation that⌅ terms in general after N steps. Since N ( M )2 for a 3+1 dimensional black hole, it appears resolve the problem? ⌅ mp a priori possible for small corrections to pile up to make Sent decrease after the halfway point of evaporation.No, this is not possible; one needs order unity corrections to evade the problem In [?] it was proved, using strong subadditivity, that such small corrections cannot lead to Leaves two sharply different possibilities: ‘Fuzzball paradigm’ and ‘ paradigm’ a decrease in Sent. AMPS invoked this argument in their analysis, so let us outline the steps in [?]. Let b ,...b b be the quanta radiated in the first N steps, and c their entangled { 1 N } ⇥ { i} { i} partners. The entanglement at step N is S (N)=S( b ). The created quanta at ent { i} the next step are are bN+1,cN+1.Wethenhave[?]: (i) By direct computation, one obtains

S(bN+1 + cN+1) < . (2.2)

(ii) Similarly, by direct computation one obtains

S(c ) > ln 2 . (2.3) N+1 (iii) The unitary evolution of the hole does not a⇥ect quanta already emitted (we have assumed that nonlocal e⇥ects, if any extend only to distances of order r0, and thus do not a⇥ect quanta that have been emitted from the hole long ago). Thus we have

S( (b )=S . (2.4) { i} N (iv) The strong subadditivity inequality gives

S( b + b )+S(b + c ) S(b )+S(c ) . (2.5) { i} N+1 N+1 N+1 ⇤ N+1 N+1 Using (i)-(iii) above we find that the entanglement entropy of the radiation after the (N + 1)-th time step, S S( b + b ), satisfies N+1 ⇥ { i} N+1 S >S +ln2 2 . (2.6) N+1 N

5

AAACCnicbVA9SwNBEJ3zM8avqKXNahCswp1EtBECNpYRzAfkQtjbzCVL9vaO3T0hxNQ2/hUbC0Vs/QV2/hv3khSa+GDhzXszzM4LEsG1cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZwqhjUWi1g1A6pRcIk1w43AZqKQRoHARjC4zvzGPSrNY3lnhgm2I9qTPOSMGit1Cke+oLInkLjkgfiJ5r6a1lc+2kpkPUW35E5AFok3I0WYodopfPndmKURSsME1brluYlpj6gynAkc5/1UY0LZgPawZamkEer2aHLKmJxYpUvCWNknDZmovydGNNJ6GAW2M6Kmr+e9TPzPa6UmvGyPuExSg5JNF4WpICYmWS6kyxUyI4aWUKa4/SthfaooMza9vA3Bmz95kdTPSl65dH5bLlbKszhycAjHcAoeXEAFbqAKNWDwCM/wCm/Ok/PivDsf09YlZzZzAH/gfP4ARd+Z+g== AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCFy9CBfsBbSib7SZdu9kNuxuhhP4HLx4U8er/8ea/cZvmoK0PBh7vzTAzL0g408Z1v53S2vrG5lZ5u7Kzu7d/UD086miZKkLbRHKpegHWlDNB24YZTnuJojgOOO0Gk5u5332iSjMpHsw0oX6MI8FCRrCxUkcNogjdDas1t+7mQKvEK0gNCrSG1a/BSJI0psIQjrXue25i/Awrwwins8og1TTBZIIj2rdU4JhqP8uvnaEzq4xQKJUtYVCu/p7IcKz1NA5sZ4zNWC97c/E/r5+a8NrPmEhSQwVZLApTjoxE89fRiClKDJ9agoli9lZExlhhYmxAFRuCt/zyKulc1L1G/fK+UWs2ijjKcAKncA4eXEETbqEFbSDwCM/wCm+OdF6cd+dj0Vpyiplj+APn8wcC8I65 (A) Fuzzball: 1 ( 0 0 + 1 1 )+O(✏) 0 = ✏ p2 | i| i | i| i h | i (Evaporates like burning paper, radiated quanta not modified at r M ) entanglement Hawking Use string theory to construct fuzzball states and see how no-hair arguments are bypassed

fuzzball

Vecro hypothesis: Resolves puzzles while maintaining causality and locality of the underlying theory (a) Causality puzzle in gravitational collapse

(b) Bags of gold problem

(c) May affect many issues in cosmology

AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KolW9Fjw4kWoYD+giWWz3bRLN5uwOxFK6d/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDP1W09cG5GoBxylPIhpX4lIMIpW8rXfR2vG5O7xolsquxV3BrJMvJyUIUe9W/ryewnLYq6QSWpMx3NTDMZUo2CST4p+ZnhK2ZD2ecdSRWNugvHs5gk5tUqPRIm2pZDM1N8TYxobM4pD2xlTHJhFbyr+53UyjK6DsVBphlyx+aIokwQTMg2A9ITmDOXIEsq0sLcSNqCaMrQxFW0I3uLLy6R5XvGqlcv7arlWzeMowDGcwBl4cAU1uIU6NIBBCs/wCm9O5rw4787HvHXFyWeO4A+czx+Em5FO AAACDHicbVDLSgNBEOz1GeMr6tHLYBC8GHYlohch4MVjBPOA7BJmJ73JkNnZZWZWCDEf4MVf8eJBEa9+gDf/xsnjoIkFA9VV3fR0hang2rjut7O0vLK6tp7byG9ube/sFvb26zrJFMMaS0SimiHVKLjEmuFGYDNVSONQYCPsX4/9xj0qzRN5ZwYpBjHtSh5xRo2V2oWiL6jsCiQueSB+qrmvpvWVd+qjrcWkyy25E5BF4s1IEWaotgtffidhWYzSMEG1bnluaoIhVYYzgaO8n2lMKevTLrYslTRGHQwnx4zIsVU6JEqUfdKQifp7YkhjrQdxaDtjanp63huL/3mtzESXwZDLNDMo2XRRlAliEjJOhnS4QmbEwBLKFLd/JaxHFWXG5pe3IXjzJy+S+lnJK5fOb8vFSnkWRw4O4QhOwIMLqMANVKEGDB7hGV7hzXlyXpx352PauuTMZg7gD5zPHzN5mmw= (B) ‘Wormhole’: Horizon is a ‘normal’ place to leading order

1 0 =1 ✏ ( 0 0 + 1 1 )+O(✏) h | i p2 | i| i | i| i

Complicated operations on radiation quanta ‘Inside’ of horizon not 3 at r & M can extract like inside of coal data from the island (island) (Not like radiation from coal)

Entangled quanta in Island form a remnant which can pinch off into a baby universe

Traversible wormhole transport information out of hole

Multi-universe dynamics, topology change in Minkowski dynamics, ensemble dynamics .. (Pennington, Almheiri, Maldacena +.. Saad +… Engelhart +…Marolf +…… …)

Nonlocalities all the way from hole to infinity (Hawking-Perry-Strominger, Raju …) THANK YOU !!