A Systematic Study of the Whole Genome Sequence
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr. -
Microbiology in Shale: Alternatives for Enhanced Gas Recovery
Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D. -
The Degradative Capabilities of New Amycolatopsis Isolates on Polylactic Acid
microorganisms Article The Degradative Capabilities of New Amycolatopsis Isolates on Polylactic Acid Francesca Decorosi 1,2, Maria Luna Exana 1,2, Francesco Pini 1,2, Alessandra Adessi 1 , Anna Messini 1, Luciana Giovannetti 1,2 and Carlo Viti 1,2,* 1 Department of Agriculture, Food, Environment and Forestry (DAGRI)—University of Florence, Piazzale delle Cascine 18, I50144 Florence, Italy; francesca.decorosi@unifi.it (F.D.); [email protected] (M.L.E.); francesco.pini@unifi.it (F.P.); alessandra.adessi@unifi.it (A.A.); anna.messini@unifi.it (A.M.); luciana.giovannetti@unifi.it (L.G.) 2 Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry (DAGRI)—University of Florence, Via della Lastruccia 14, I50019 Sesto Fiorentino, Italy * Correspondence: carlo.viti@unifi.it; Tel.: +39-05-5457-3224 Received: 15 October 2019; Accepted: 18 November 2019; Published: 20 November 2019 Abstract: Polylactic acid (PLA), a bioplastic synthesized from lactic acid, has a broad range of applications owing to its excellent proprieties such as a high melting point, good mechanical strength, transparency, and ease of fabrication. However, the safe disposal of PLA is an emerging environmental problem: it resists microbial attack in environmental conditions, and the frequency of PLA-degrading microorganisms in soil is very low. To date, a limited number of PLA-degrading bacteria have been isolated, and most are actinomycetes. In this work, a method for the selection of rare actinomycetes with extracellular proteolytic activity was established, and the technique was used to isolate four mesophilic actinomycetes with the ability to degrade emulsified PLA in agar plates. All four strains—designated SO1.1, SO1.2, SNC, and SST—belong to the genus Amycolatopsis. -
1 Supplementary Material a Major Clade of Prokaryotes with Ancient
Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter. -
Amycolatopsis Kentuckyensis Sp. Nov., Amycolatopsis Lexingtonensis Sp
International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1601–1605 DOI 10.1099/ijs.0.02691-0 Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas D. P. Labeda,1 J. M. Donahue,2 N. M. Williams,2 S. F. Sells2 and M. M. Henton3 Correspondence 1Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural D. P. Labeda Utilization Research, USDA Agricultural Research Service, 1815 North University Street, [email protected] Peoria, IL 61604, USA 2Livestock Disease Diagnostic Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40511, USA 3Golden Vetlab, PO 1537, Alberton, South Africa Actinomycete strains isolated from lesions on equine placentas from two horses in Kentucky and one in South Africa were subjected to a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics indicated that the isolates are members of the genus Amycolatopsis. On the basis of phylogenetic analysis of 16S rDNA sequences, the isolates are related most closely to Amycolatopsis mediterranei. Physiological characteristics of these strains indicated that they do not belong to A. mediterranei and DNA relatedness determinations confirmed that these strains represent three novel species of the genus Amycolatopsis, for which the names Amycolatopsis kentuckyensis (type strain, NRRL B-24129T=LDDC 9447-99T=DSM 44652T), Amycolatopsis lexingtonensis (type strain, NRRL B-24131T=LDDC 12275-99T=DSM 44653T) and Amycolatopsis pretoriensis (type strain, NRRL B-24133T=ARC OV1 0181T=DSM 44654T) are proposed. INTRODUCTION been associated with nocardioform placentitis. Most of the severe infections were caused by the recently described Over the past decade, actinomycetes have been reported to actinomycete Crossiella equi (Donahue et al., 2002). -
Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing. -
Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis
molecules Review Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis Zhiqiang Song, Tangchang Xu, Junfei Wang, Yage Hou, Chuansheng Liu, Sisi Liu and Shaohua Wu * Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; [email protected] (Z.S.); [email protected] (T.X.); [email protected] (J.W.); [email protected] (Y.H.); [email protected] (C.L.); [email protected] (S.L.) * Correspondence: [email protected] Abstract: Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to sum- marize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive Citation: Song, Z.; Xu, T.; Wang, J.; compounds and derivatives are included and the prospect of the chemical substances obtained from Hou, Y.; Liu, C.; Liu, S.; Wu, S. -
(A) Sepx (Vnz 14865) Is a Whiab-Target As Identified by Chip-Seq
Supplementary Figure 1 Supplementary Figure 1: SepX is developmentally regulated and requires FtsZ for localization. (a) sepX (vnz_14865) is a WhiAB-target as identified by ChIP-seq. Enrichment (normalized IP – total coverage) in strains expressing either WhiA-FLAG (solid red line) or WhiB-FLAG (solid blue line) but not in the untagged wildtype controls (dashed red and dashed blue lines) was observed upstream of the sepX gene in vivo14,15. (b) WhiA and WhiB co-activate the transcription of sepX. Data represent transcriptomic data during submerged sporulation in wild-type S. venezuelae (black line); the congenic whiA mutant (red line); and the congenic whiB mutant (blue line)14,15,19. The x-axis indicates the age of the culture in hours, and the y-axis indicates the per-gene normalized transcript abundance (Expression Value log2). (c) Microscopic analysis of SepX-mCherry distribution in the ftsZ mutant background (MB1082). Hyphal cell wall was visualized using 0.25 mM HADA. Scale bar: 5 m. DIC, differential interference contrast. (d) Virtual Western blot showing SepX-mCherry abundance in the wildtype (MB1124) and the ftsZ mutant (MB1082) compared to the corresponding untagged strains. Automated western blot analysis was performed in biological duplicate. Equal amounts of protein lysate were loaded and SepX-mCherry was detected using -mCherry antibody. 1 Supplementary Figure 2 Supplementary Figure 2: SepX is a determinant of cross-wall formation and is required for regular sporulation. (a) Representative image of HADA-stained hyphae emerging from a sepX spore (small dashed box) Scale bar: 10 m. Occasionally, a division septum can be detected close to the mother spore (magnified region in inset). -
Screening of Antagonistic Marine Actinomycetes: Optimization of Process Parameters for the Production of Novel Antibiotic by Amycolatopsis Alba Var
& Bioch ial em b ic ro a c l i T M e f c Venkata Ratna Ravi Kumar et al., J Microbial Biochem Technol 2011, 3:5 h o Journal of l n o a l n o r DOI: 10.4172/1948-5948.1000058 g u y o J ISSN: 1948-5948 Microbial & Biochemical Technology Research Article Article OpenOpen Access Access Screening of Antagonistic Marine Actinomycetes: Optimization of Process Parameters for the Production of Novel Antibiotic by Amycolatopsis Alba var. nov. DVR D4 Venkata Ratna Ravi Kumar Dasari*, Murali Yugandhar Nikku and Sri Rami Reddy Donthireddy Center for Biotechnology, College of Engineering, Andhra University, Visakhapatnam- 530 003, India Abstract Screening of six marine sediment samples near NTPC of the Visakhapatnam (India) Coast of Bay of Bengal resulted in the isolation of 72 isolates of actinomycetes. Among these, Amycolatopsis alba var. nov. DVR D4 showed broad antibacterial activity spectra against Gram-positive and Gram-negative bacteria; and produced antibacterial metabolite extracellulary under submerged fermentation conditions. The chemical and physical process parameters affecting the production of the antibiotic were optimized. The maximum antibiotic activity was obtained with the optimized production medium containing D-glucose, 2.0 %w/v; malt extract, 4.0 %w/v; yeast extract, 0.4 %w/v; dipotassium hydrogen phosphate, 0.5 %w/v; sodium chloride, 0.25 %w/v; zinc sulphate, 0.004 %w/v; calcium carbonate, 0.04 %w/v; with inoculum volume of 5.0 %v/v at 6.0 pH, 28°C incubation temperature, 220 rpm and for 96 h incubation. Keywords: Screening; Optimization; Submerged fermentation; Apart from the cultural conditions (inoculum age, inoculum Amycolatopsis alba; Antibacterial activity; Minimum inhibitory volume) of the organism, fermentation medium has profound effect concentration on product formation directly or indirectly. -
Characterizing the Fecal Microbiota and Resistome of Corvus Brachyrhynchos (American Crow) in Fresno and Davis, California
ABSTRACT CHARACTERIZING THE FECAL MICROBIOTA AND RESISTOME OF CORVUS BRACHYRHYNCHOS (AMERICAN CROW) IN FRESNO AND DAVIS, CALIFORNIA American Crows are common across the United States, well adapted to human habitats, and congregate in large winter roosts. We aimed to characterize the bacterial community (microbiota) of the crows’ feces, with an emphasis on human pathogens. The antibiotic resistance (AR) of the bacteria was analyzed to gain insight into the role crows may play in the spread of AR genes. Through 16S rRNA gene and metagenomic sequencing, the microbiota and antibiotic resistance genes (resistome) were determined. The core microbiota (taxa found in all crows) contained Lactobacillales (22.2% relative abundance), Enterobacteriales (21.9%) and Pseudomonadales (13.2%). Among the microbiota were human pathogens including Legionella, Camplycobacter, Staphylococcus, Streptococcus, and Treponema, among others. The Fresno, California crows displayed antibiotic resistance genes for multiple drug efflux pumps, macrolide-lincosamide- streptogramin (MLS), and more. Ubiquitous, urban wildlife like the American Crow may play a role in the spread of AR pathogens to the environment and human populations. Rachel Lee Nelson August 2018 CHARACTERIZING THE FECAL MICROBIOTA AND RESISTOME OF CORVUS BRACHYRHYNCHOS (AMERICAN CROW) IN FRESNO AND DAVIS, CALIFORNIA by Rachel Lee Nelson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology in the College of Science and Mathematics California State University, Fresno August 2018 APPROVED For the Department of Biology: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree.