Boeing 737-800 Pilot’S Operating Manual

Total Page:16

File Type:pdf, Size:1020Kb

Boeing 737-800 Pilot’S Operating Manual X-Plane 11 Boeing 737-800 Pilot’s Operating Manual Author: Julian Lockwood ([email protected]) Copyright: Laminar Research 2018 Disclaimer The information contained in this document is for simulation use only, within the X-Plane flight simulator. This document is not subject to revision and has not been checked for accuracy. This document is intended for entertainment only and may not to be used in situations involving real-life aircraft, or real-life aviation. Distribution This document may be copied and distributed by Laminar Research customers and developers, for entertainment. It may also be distributed with third-party content developed for X-Plane 11. 1 Contents Background: The Boeing 737 ........................................................................................................................ 5 B737-800 Series Specifications ................................................................................................................. 6 The X-Plane B737-800 ................................................................................................................................... 7 Views and Controls ....................................................................................................................................... 8 Creating “Quick Look” views ..................................................................................................................... 9 Operating the controls ............................................................................................................................ 12 Assigning peripheral devices ................................................................................................................... 14 A Tour of the Cockpit .................................................................................................................................. 17 Forward Overhead Panel ........................................................................................................................ 17 1. Flight Controls ................................................................................................................................. 18 2. AC and DC Metering ........................................................................................................................ 18 3. Transfer ........................................................................................................................................... 19 4. Standby Power & Generator Bus .................................................................................................... 19 5. Fuel .................................................................................................................................................. 20 7. Ice & Rain Protection ...................................................................................................................... 21 8. Temperature Control ...................................................................................................................... 21 9. Pneumatics ...................................................................................................................................... 22 10. Hydraulics ...................................................................................................................................... 22 12. Miscellaneous ............................................................................................................................... 23 Aft Overhead Panel ................................................................................................................................. 24 1. Emergency Locator Transmitter (ELT) ............................................................................................. 25 2. Dome Light ...................................................................................................................................... 25 3. Audio Control .................................................................................................................................. 26 4. Electronic Engine Control (EEC) ...................................................................................................... 26 Primary Instrument Panels ..................................................................................................................... 28 Electronic Attitude Director Indicator (EADI)...................................................................................... 28 Electronic Horizontal Situation Indicator (EHSI) ................................................................................. 29 Backup EADI/EHSI ............................................................................................................................... 29 Instrument Lighting Control Panel ...................................................................................................... 30 Chronometer ....................................................................................................................................... 30 Tiller .................................................................................................................................................... 31 Annunciators ....................................................................................................................................... 31 2 Electronic Attitude Director Indicator (EADI) Components .............................................................. 32 Mach Number ..................................................................................................................................... 32 FMC SPD .............................................................................................................................................. 32 LNAV .................................................................................................................................................... 32 VNAV ................................................................................................................................................... 32 Altitude Pre-Set ................................................................................................................................... 32 Altitude Scale ...................................................................................................................................... 33 Flight Director Horizontal Deviation Bar ............................................................................................. 33 Current Altitude .................................................................................................................................. 33 ILS Vertical Deviation Scale ................................................................................................................. 33 Static Reference Lines ......................................................................................................................... 33 Airspeed Scale ..................................................................................................................................... 33 Current Airspeed ................................................................................................................................. 33 Flight Director Vertical Deviation Bar ................................................................................................. 33 Altitude Above Ground (AGL) ............................................................................................................. 33 Heading Bug ........................................................................................................................................ 33 Magnetic Heading ............................................................................................................................... 33 Altimeter Setting ................................................................................................................................. 33 Electronic Horizontal Situation Indicator (EHSI) Components .......................................................... 34 Electronic Horizontal Situation Indicator (EHSI) Control Panel ........................................................ 36 Flight Path Vector Display ................................................................................................................... 36 MTRS ................................................................................................................................................... 36 Baro Rotary ......................................................................................................................................... 36 VOR 2 .................................................................................................................................................. 36 Map Display Distance .......................................................................................................................... 36 Features Buttons ................................................................................................................................. 36 MINS Reference Selector .................................................................................................................... 36 VOR 1 .................................................................................................................................................. 36 EHSI Mode ..........................................................................................................................................
Recommended publications
  • ALT / VS Selector/Alerter
    ALT / VS Selector / Alerter PN 01279-( ) Pilot’s Operating Handbook ENT ALT SEL ALR DH VS BARO S–TEC * Asterisk indicates pages changed, added, or deleted by List of Effective Pages current revision. Retain this record in front of handbook. Upon receipt of a Record of Revisions revision, insert changes and complete table below. Revision Number Revision Date Insertion Date/Initials 1st Ed. Oct 26, 00 2nd Ed. Jan 15, 08 3rd Ed. Jun 24, 16 3rd Ed. Jun 24, 16 i S–TEC Page Intentionally Blank ii 3rd Ed. Jun 24, 16 S–TEC Table of Contents Sec. Pg. 1 Overview...........................................................................................................1–1 1.1 Document Organization....................................................................1–3 1.2 Purpose..............................................................................................1–3 1.3 General Control Theory....................................................................1–3 1.4 Block Diagram....................................................................................1–4 2 Pre-Flight Procedures...................................................................................2–1 2.1 Pre-Flight Test....................................................................................2–3 3 In-Flight Procedures......................................................................................3–1 3.1 Selector / Alerter Operation..............................................................3–3 3.1.1 Data Entry.............................................................................3–3
    [Show full text]
  • How Doc Draper Became the Father of Inertial Guidance
    (Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla.
    [Show full text]
  • Lighting up to 7 Times Brighter Than Other LED Landing Lights!
    Lighting FAA-PMA Approved AeroLEDs Lighting Increase safety and reduce operating cost! See the Difference... Lighting Know the Difference... • Increased safety • Direct replacement • Up to 80% reduced power consumption • Long life - over 50,000 hours! • Lighter weight - no heavy power supply - save up to 3 lbs • Reduced drag • Zero maintenance • 10x more efficient than incandescent! Increased Safety AeroLED lights allow you to comply with the latest FAA recommendations (Operation Lights On) regarding extended use of taxi, landing, and anti-collision lights without fear of reduced light performance or life. They all feature optimized light color (6500k sunlight equivalent) for proven superior air-to-air recognition. The landing and taxi lights also feature an optional pulsed recognition light mode. Reduced Power Consumption High efficiency LED lights use less than 1/3 the power of halogen bulbs. They significantly reduce the load on the electrical system and they won't dim due to low voltage, typical of low RPM final approaches when you need them most! Postition lights aerodynamic design results in less drag than original equipment! Longer Life - Zero Maintenance All AeroLED products are designed to be a "lifetime buy". They last over 50,000 hours when properly installed and do not degrade with on/off cycles. They are extremely rugged and hardened against all kinds of electrical damage, shock, and vibration. Up to 7 times brighter than other LED landing lights! PAR36 Landing Light Comparison Measured Brightness at 50 Ft. Manufacturer Intensity
    [Show full text]
  • Installation Manual, Document Number 200-800-0002 Or Later Approved Revision, Is Followed
    9800 Martel Road Lenoir City, TN 37772 PPAAVV8800 High-fidelity Audio-Video In-Flight Entertainment System With DVD/MP3/CD Player and Radio Receiver STC-PMA Document P/N 200-800-0101 Revision 6 September 2005 Installation and Operation Manual Warranty is not valid unless this product is installed by an Authorized PS Engineering dealer or if a PS Engineering harness is purchased. PS Engineering, Inc. 2005 © Copyright Notice Any reproduction or retransmittal of this publication, or any portion thereof, without the expressed written permission of PS Engi- neering, Inc. is strictly prohibited. For further information contact the Publications Manager at PS Engineering, Inc., 9800 Martel Road, Lenoir City, TN 37772. Phone (865) 988-9800. Table of Contents SECTION I GENERAL INFORMATION........................................................................ 1-1 1.1 INTRODUCTION........................................................................................................... 1-1 1.2 SCOPE ............................................................................................................................. 1-1 1.3 EQUIPMENT DESCRIPTION ..................................................................................... 1-1 1.4 APPROVAL BASIS (PENDING) ..................................................................................... 1-1 1.5 SPECIFICATIONS......................................................................................................... 1-2 1.6 EQUIPMENT SUPPLIED ............................................................................................
    [Show full text]
  • Bell 429 Product Specifications
    BELL 429 SPECIFICATIONS BELL 429 SPECIFICATIONS Publisher’s Notice The information herein is general in nature and may vary with conditions. Individuals using this information must exercise their independent judgment in evaluating product selection and determining product appropriateness for their particular purpose and requirements. For performance data and operating limitations for any specific mission, reference must be made to the approved flight manual. Bell Helicopter Textron Inc. makes no representations or warranties, either expressed or implied, including without limitation any warranties of merchantability or fitness for a particular purpose with respect to the information set forth herein or the product(s) and service(s) to which the information refers. Accordingly, Bell Helicopter Textron Inc. will not be responsible for damages (of any kind or nature, including incidental, direct, indirect, or consequential damages) resulting from the use of or reliance on this information. Bell Helicopter Textron Inc. reserves the right to change product designs and specifications without notice. © 2019 Bell Helicopter Textron Inc. All registered trademarks are the property of their respective owners. FEBRUARY 2019 © 2019 Bell Helicopter Textron Inc. Specifications subject to change without notice. i BELL 429 SPECIFICATIONS Table of Contents Bell 429 ..................................................................................................................................1 Bell 429 Specification Summary (U.S. Units) ........................................................................4
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • Advisory Circular (AC)
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Parts 91, 121, 125, and 135 Date: 7/30/12 AC No: 120-74B Flightcrew Procedures During Taxi Initiated by: Change: Operations AFS-200/800 1. PURPOSE. This advisory circular (AC) provides guidelines for the development and implementation of standard operating procedures (SOP) for conducting safe aircraft operations during taxiing to avoid causing a runway incursion. In accordance with Federal Aviation Administration (FAA) Order 7050.1, Runway Safety Program, the definition of a runway incursion is any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface designated for the landing and takeoff of aircraft. It is intended for use by persons operating aircraft with two or more pilots on the flight deck under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The FAA recommends that these guidelines become an integral part of all SOPs, flight operations manuals (FOM), and formal flightcrew member training programs. The use of flightcrew SOPs should be emphasized and employed during all phases of flight, including ground operations. Appendices 1 and 2 of this AC contain examples of SOPs that are identical or similar to some SOPs currently in use. These appendices are not directive or prescriptive in nature and do not represent a rigid FAA view of Best Practices. SOPs may vary among fleets and among certificate holders and may change over time. Operators may integrate the information contained in Appendices 1 and 2 into their fleet-specific, route-specific, and equipment-specific operations and checklists.
    [Show full text]
  • Cockpit Acceptance Check Primo Ingresso Nel Cockpit E Preparazione – PAG 1/2 1. BATTERY SWITCH
    Cockpit Acceptance Check Primo Ingresso nel Cockpit e Preparazione – PAG 1/2 1. BATTERY SWITCH ..................................................................ON 2. DC Selector ……………………..…………………………………..…….BAT 3. Panel Lights..........................................................ON if required 4. GROUND POWER (If Available) ..............................................ON 5. AC Selector (if GND POWER On) …………………………...GRD PWR 6. ELECTRICAL HYDRAULIC PUMP SWITCHES (ALL) …..........OFF 7. PAX/CARGO/SERVICE DOOR LIGHT …….…….…CHECK ALL OFF 8. EMERGENCY EXIT lights switch ………...ARMED (Guard DOWN) 9. WING/ENG ANTI-ICE ………………………….…….……………….….OFF 10. EQUIP COOLINGS ……………………………….….………….…NORMAL 11. NO SMOKING / FASTEN BELTS ....…………..………………..….…ON -------------------------------------------------------------------------------------------------------------------------------------- 12. POSITION LIGHT ……………………………………………..…………………ON 13. LOGO LIGHT ………………………………. ON (Night) …………. OFF (Day) Cockpit Acceptance Check Primo Ingresso nel Cockpit e Preparazione – PAG 2/2 Prima dell’accensione dell’APU eseguire il “Test Sistemi Antincendio” Overheat/Fire Protection before APU Start 1. OVERHEAT DETECTOR SWITCHES…………………………………NORMAL 2. TEST SWITCHES …………..………Hold to FAUL/INOP then OVHT/FIRE 3. During TEST Verify: - the FAULT and WHEEL WELL lights illuminate - the FIRE HORN WILL SOUND - the THREE FIRE HANDLES WILL ILLUMINATE - the ENGINE OVERHEAT WILL ILLUMINATE --------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • P:\Dokumentation\Manual-O\DA 62\7.01.25-E
    DA 62 AFM Ice Protection System Supplement S03 FIKI SUPPLEMENT S03 TO THE AIRPLANE FLIGHT MANUAL DA 62 ICE PROTECTION SYSTEM FOR FLIGHT INTO KNOWN ICING Doc. No. : 7.01.25-E Date of Issue of the Supplement : 01-Apr-2016 Design Change Advisory : OÄM 62-003 This Supplement to the Airplane Flight Manual is EASA approved under Approval Number EASA 10058874. This AFM - Supplement is approved in accordance with 14 CFR Section 21.29 for U.S. registered aircraft and is approved by the Federal Aviation Administration. DIAMOND AIRCRAFT INDUSTRIES GMBH N.A. OTTO-STR. 5 A-2700 WIENER NEUSTADT AUSTRIA Page 9-S03-1 Ice Protection System DA 62 AFM FIKI Supplement S03 Intentionally left blank. › Page 9-S03-2 05-May-2017 Rev. 2 Doc. # 7.01.25-E DA 62 AFM Ice Protection System Supplement S03 FIKI 0.1 RECORD OF REVISIONS Rev. Chap- Date of Approval Date of Date Signature Reason Page(s) No. ter Revision Note Approval Inserted Rev. 1 to AFM Supplement S03 to AFM 9-S03-1, Doc. No. FAA 7.01.25-E is 1 0 9-S03-3, 10 Oct 2016 14 Oct 2016 Approval approved by 9-S03-4 EASA with Approval No. EASA 10058874 › Rev. 2 to AFM › Supplement › S03 to AFM › Doc. No. › TR-MÄM › All, except 7.01.25-E is › 2 62-254, 05 May 2017 › All approved 13 Nov 2017 › Corrections Cover Page › under the › authority of › DOA › No.21J.052 › Doc. # 7.01.25-E Rev. 2 05-May-2017 Page 9-S03-3 Ice Protection System DA 62 AFM FIKI Supplement S03 0.3 LIST OF EFFECTIVE PAGES Chapter Page Date 9-S03-1 10-Oct-2016 › 9-S03-2 05-May-2017 › 9-S03-3 05-May-2017 › 9-S03-4 05-May-2017 0 › 9-S03-5 05-May-2017 › 9-S03-6 05-May-2017 › 9-S03-7 05-May-2017 › 9-S03-8 05-May-2017 › 9-S03-9 05-May-2017 › 9-S03-10 05-May-2017 1 › 9-S03-11 05-May-2017 › 9-S03-12 05-May-2017 › appr.
    [Show full text]
  • Safe Flight Autopower® for Hawker 800 Series Aircraft
    ® Safe Flight AutoPower For ® Hawker 800 Series Aircraft Chesterfield, MO 636-681-5600 Safe Flight AutoPower® Installed With Experience By West Star Aviation Safe Flight AutoPower® Installed With Experience By West Star Aviation The Mission To deliver the precise management of speed through the control of thrust during all phases of flight to maximize safety, performance and efficiency to the Hawker 800 series of aircraft. The Solution AutoPower® – the automatic throttle system (ATS) from Safe Flight Instrument Corporation. In cruise, the Auto Throttle system is continuously Safe Flight pioneered the development of automatic throttle technology which is now monitoring and adjusting the power levers to standard equipment on most large and medium business jets. AutoPower® systems and offset acceleration due to fuel burn. This results components from Safe Flight are installed on more than 9,000 corporate, commercial, in a fuel saving of 3% or more depending on the length of the flight. and military aircraft worldwide. The Benefits From takeoff to touchdown, AutoPower® ATS is designed to provide precise air speed control and engine target settings. The results are significant performance and safety advantages ranging from reduced crew workload and improved situational awareness to greater passenger comfort and increased aircraft value. Operators also report a 3.5 percent increase in range with the system by better controlling speed at cruise and maximizing fuel burn. The AutoPower® system manages engine power by automatically moving the thrust levers, When the flight crew selects a lower altitude on keeping the pilot aware of the adjustments at all times. Overriding the throttles never takes the Proline 21 system, the Auto Throttle system more force than when the system is not engaged.
    [Show full text]
  • Ac 120-67 3/18/97
    Advisory u.s. Department ofTransportation Federal Aviation Circular Ad.nnlstratlon Subject: CRITERIA FOR OPERATIONAL Date: 3/18/97 AC No: 120-67 APPROVAL OF AUTO FLIGHT Initiated By: AFS-400 Change: GUIDANCE SYSTEMS 1. PURPOSE. This advisory circular (AC) states an acceptable means, but not the only means, for obtaining operational approval of the initial engagement or use of an Auto Flight Guidance System (AFGS) under Title 14 of the Code of Federal Regulations (14 CFR) part 121, section 121.579(d); part 125, section 125.329(e); and part 135, section 135.93(e) for the takeoff and initial climb phase of flight. 2. APPLICABILITY. The criteria contained in this AC are applicable to operators using commercial turbojet and turboprop aircraft holding Federal Aviation Administration (FAA) operating authority issued under SPAR 38-2 and 14 CFR parts 119, 121, 125, and 135. The FAA may approve the AFGS operation for the operators under these parts, where necessary, by amending the applicant's operations specifications (OPSPECS). 3. BACKGROUND. The purpose of this AC is to take advantage of technological improvements in the operational capabilities of autopilot systems, particularly at lower altitudes. This AC complements a rule change that would allow the use of an autopilot, certificated and operationally approved by the FAA, at altitudes less than 500 feet above ground level in the vertical plane and in accordance with sections 121.189 and 135.367, in the lateral plane. 4. DEFINITIONS. a. Airplane Flight Manual (AFM). A document (under 14 CFR part 25, section 25.1581) which is used to obtain an FAA type certificate.
    [Show full text]
  • Ice and Rain Protection
    SECTION II AIRPLANE AND SYSTEMS MODEL 680 ICE AND RAIN PROTECTION The anti-ice systems are designed to prevent ice formation on the pitot tubes, static ports, angle-of-attack probes, ram air temperature (RAT) probes, engines, wings, wing roots, horizontal stabilizer leading edges, windshields, and overboard water drain lines. The vertical stabilizer does not require anti-icing. The various anti-icing systems use electrical heating elements or hot engine bleed air, and are activated by switches and knobs on the instrument panels. There are many engine instrument and crew alerting system (EICAS) messages that pertain to operation of the anti-icing systems. Some are discussed here, but most are covered in detail under Engine Indicating and Crew Alerting System (EICAS), in Section Three of this manual. ICE AND RAIN PROTECTION Figure 2-23 2-70 Configuration AA 68OM-00 SECTION II MODEL 680 AIRPLANE AND SYSTEMS ANTI-ICE CONTROL PANEL Figure 2-24 DC electric power is used to anti-ice the pitot tubes and static ports, the AOA probes, the ram air temperature (RAT) probes. AC electric power is used for the cockpit windshields and front side windows. High-pressure, or low-pressure bleed air is used to anti-ice the wing leading edges, the wing-mounted landing lights, and the horizontal stabilizer leading edges. Windshield, pitot/static and AOA anti-ice are normally operated full-time in flight. 68OM-00 Configuration AA 2-71 SECTION II AIRPLANE AND SYSTEMS MODEL 680 PITOT-STATIC AND ANGLE-OF-ATTACK (AOA) PROBE ANTI-ICE Electric elements heat the pilot and copilot pitot tubes, static ports, AOA probes, and standby pitot/static system.
    [Show full text]