Dengue Fever, Chikungunya and the Zika Virus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Executive Orders and Emergency Declarations for the West Nile Virus: Applying Lessons from Past Outbreaks to Zika
Executive Orders and Emergency Declarations for the West Nile Virus: Applying Lessons from Past Outbreaks to Zika Government leaders are often given the authority to issue executive orders (EOs), proclamations, or emergency declarations to address public health threats, such as that posed by the Zika virus.1 Local, state, and federal executive branch leaders have used these powers to address public health threats posed by other mosquito-borne diseases.2 While existing laws and regulations may allow localities, states, and the federal government to take action to combat mosquito-borne threats absent an EO or emergency declaration, examining such executive actions provides a snapshot of how some jurisdictions have responded to past outbreaks. As of February 21, 2016, only one territory and two states (Puerto Rico, Florida, and Hawaii) have issued emergency declarations that contemplate the threats posed by the Zika virus.3, 4 Historically, however, many US jurisdictions have taken such actions to address other mosquito-borne illnesses, such as West Nile virus. The following provides a brief analysis of select uses of local, state, and federal executive powers to combat West Nile virus. Examining the use of executive powers to address West 1 L Rutkow et al. The Public Health Workforce and Willingness to Respond to Emergencies: A 50-State Analysis of Potentially Influential Laws, 42 J. LAW MED. & ETHICS 64, 64 (2014) (“In the United States, at the federal, state, and local levels, laws provide an infrastructure for public health emergency preparedness and response efforts. Law is perhaps most visible during an emergency when the president or a state’s governor issues a disaster declaration establishing the temporal and geographic parameters for the response and making financial and other resources available.”). -
Asian Zika Virus Isolate Significantly Changes the Transcriptional Profile
viruses Article Asian Zika Virus Isolate Significantly Changes the Transcriptional Profile and Alternative RNA Splicing Events in a Neuroblastoma Cell Line Gaston Bonenfant 1,2, Ryan Meng 2, Carl Shotwell 2,3 , Pheonah Badu 1,2, Anne F. Payne 4, Alexander T. Ciota 4,5, Morgan A. Sammons 1, J. Andrew Berglund 1,2 and Cara T. Pager 1,2,* 1 Department of Biological Sciences, University at Albany-SUNY, Albany, NY 12222, USA; [email protected] (G.B.); [email protected] (P.B.); [email protected] (M.A.S.); [email protected] (J.A.B.) 2 The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA; [email protected] (R.M.); [email protected] (C.S.) 3 Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA 4 Wadsworth Center, New York State Department of Health (NYSDOH), Slingerlands, NY 12159, USA; [email protected] (A.F.P.); [email protected] (A.T.C.) 5 Department of Biomedical Sciences, University at Albany-SUNY, School of Public Health, Rensselaer, NY 12144, USA * Correspondence: [email protected]; Tel.: +1-518-591-8841 Received: 9 April 2020; Accepted: 27 April 2020; Published: 5 May 2020 Abstract: The alternative splicing of pre-mRNAs expands a single genetic blueprint to encode multiple, functionally diverse protein isoforms. Viruses have previously been shown to interact with, depend on, and alter host splicing machinery. The consequences, however, incited by viral infection on the global alternative slicing (AS) landscape are under-appreciated. Here, we investigated the transcriptional and alternative splicing profile of neuronal cells infected with a contemporary Puerto Rican Zika virus (ZIKVPR) isolate, an isolate of the prototypical Ugandan ZIKV (ZIKVMR), and dengue virus 2 (DENV2). -
A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1, -
Guide for Common Viral Diseases of Animals in Louisiana
Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. -
An Overview of Mosquito Vectors of Zika Virus
Microbes and Infection xxx (2018) 1e15 Contents lists available at ScienceDirect Microbes and Infection journal homepage: www.elsevier.com/locate/micinf An overview of mosquito vectors of Zika virus Sebastien Boyer a, Elodie Calvez b, Thais Chouin-Carneiro c, Diawo Diallo d, * Anna-Bella Failloux e, a Institut Pasteur of Cambodia, Unit of Medical Entomology, Phnom Penh, Cambodia b Institut Pasteur of New Caledonia, URE Dengue and Other Arboviruses, Noumea, New Caledonia c Instituto Oswaldo Cruz e Fiocruz, Laboratorio de Transmissores de Hematozoarios, Rio de Janeiro, Brazil d Institut Pasteur of Dakar, Unit of Medical Entomology, Dakar, Senegal e Institut Pasteur, URE Arboviruses and Insect Vectors, Paris, France article info abstract Article history: The mosquito-borne arbovirus Zika virus (ZIKV, Flavivirus, Flaviviridae), has caused an outbreak Received 6 December 2017 impressive by its magnitude and rapid spread. First detected in Uganda in Africa in 1947, from where it Accepted 15 January 2018 spread to Asia in the 1960s, it emerged in 2007 on the Yap Island in Micronesia and hit most islands in Available online xxx the Pacific region in 2013. Subsequently, ZIKV was detected in the Caribbean, and Central and South America in 2015, and reached North America in 2016. Although ZIKV infections are in general asymp- Keywords: tomatic or causing mild self-limiting illness, severe symptoms have been described including neuro- Arbovirus logical disorders and microcephaly in newborns. To face such an alarming health situation, WHO has Mosquito vectors Aedes aegypti declared Zika as an emerging global health threat. This review summarizes the literature on the main fi Vector competence vectors of ZIKV (sylvatic and urban) across all the ve continents with special focus on vector compe- tence studies. -
Division of Disease Control Pump Handle
"I had an interview with the Board of Guardians of St. James's parish, on the evening of Thursday, 7th September, and represented the above circumstances to them. In consequence of what I said, the handle of the pump was removed on the following day." John Snow, 1855 April 2016 Topics Rabies Update – Laura Cronquist Disease Control Is Amassing a Small Army of Students – Tracy Miller Zika Virus Update – Laura Cronquist New Disease Control Employee! Rabies Update As of May 16, 2016, nine animals have tested positive for rabies in North Dakota, including five skunks, three cows, and one cat. Six animals tested positive for rabies in 2015, but over the previous five years, an average of 31 animals per year tested positive for rabies. North Dakota Department of Health (NDDoH) surveillance data from the past 20 years shows that skunks make up the majority of animal rabies cases in the state. While all species of mammals are susceptible to rabies virus infection, over 90% of all animal rabies cases reported to the Centers for Disease Control and Prevention (CDC) occur in wild animals. Skunks, bats, raccoons, and foxes are the animals that most often get rabies in the United States. Skunks and raccoons are particularly important as reservoirs for the rabies virus, which is the rationale behind a state law prohibiting North Dakotans from keeping a skunk or raccoon in captivity. One of the best ways to protect yourself and others from rabies is by making sure that your pets are vaccinated. Contact your veterinarian to find out whether your pets are up-to-date on their rabies vaccinations. -
Dengue Fever/Severe Dengue Fever/Chikungunya Fever! Report on Suspicion of Infection During Business Hours
Dengue Fever/Severe Dengue Fever/Chikungunya Fever! Report on suspicion of infection during business hours PROTOCOL CHECKLIST Enter available information into Merlin upon receipt of initial report Review background information on the disease (see Section 2), case definitions (see Section 3 for dengue and for chikungunya), and laboratory testing (see Section 4) Forward specimens to the Florida Department of Health (DOH) Bureau of Public Health Laboratories (BPHL) for confirmatory laboratory testing (as needed) Inform local mosquito control personnel of suspected chikungunya or dengue case as soon as possible (if applicable) Inform state Arbovirus Surveillance Coordinator on suspicion of locally acquired arbovirus infection Contact provider (see Section 5A) Interview case-patient Review disease facts (see Section 2) Mode of transmission Ask about exposure to relevant risk factors (see Section 5. Case Investigation) History of travel, outdoor activities, and mosquito bites two weeks prior to onset History of febrile illness or travel for household members or other close contacts in the month prior to onset History of previous arbovirus infection or vaccination (yellow fever, Japanese encephalitis) Provide education on transmission and prevention (see Section 6) Awareness of mosquito-borne diseases Drain standing water at least weekly to stop mosquitoes from multiplying Discard items that collect water and are not being used Cover skin with clothing or Environmental Protection Agency (EPA)-registered repellent such as DEET (N,N-diethyl-meta-toluamide) Use permethrin on clothing (not skin) according to manufacturer’s directions Cover doors and windows with intact screens to keep mosquitoes out of the house Enter additional data obtained from interview into Merlin (see Section 5D) Arrange for a convalescent specimen to be taken (if necessary) Dengue/Chikungunya Guide to Surveillance and Investigation Dengue Fever/Severe Dengue/Chikungunya 1. -
Summer Safety Guide C L I N T O N C O U N T Y H E a L T H D E P a R T M E N T
SUMMER SAFETY GUIDE C L I N T O N C O U N T Y H E A L T H D E P A R T M E N T S U M M E R 2 0 1 7 WHAT'S INSIDE... 2 7 W H A T ' S B I T I N G Y O U ? P R O T E C T Y O U R H O M E 3 8-9 M O S Q U I T O E S A N I M A L S A N D R A B I E S 4-5 10 T I C K S A N D L Y M E D I S E A S E B E D B U G S 6 11-12 P R O T E C T Y O U R S E L F S U N A N D W A T E R S A F E T Y WHAT'S BITING YOU? P R E V E N T I O N I S Y O U R B E S T D E F E N S E SUMMER HAS ARRIVED! THAT Mosquitoes West Nile virus (WNV) and Eastern MEANS SUN AND FUN, BUT IT equine encephalitis (EEE) are the most common diseases transmitted IS ALSO THE TIME OF YEAR Animals by local mosquitoes. There are no Wildlife is part of the beauty of our WHEN PEOPLE ARE MOST human vaccines for these diseases, Adirondack region, but animals are but there are simple steps you can best viewed from afar. -
Tracking Rift Valley Fever
Tracking Rift Valley fever: From Mali to Europe and other countries, 2016 Christelle Tong, Emilie Javelle, Gilda Grard, Aissata Dia, Constance Lacrosse, Toscane Fourié, Patrick Gravier, Stéphanie Watier-Grillot, Renaud Lancelot, Franck Letourneur, et al. To cite this version: Christelle Tong, Emilie Javelle, Gilda Grard, Aissata Dia, Constance Lacrosse, et al.. Tracking Rift Valley fever: From Mali to Europe and other countries, 2016. Eurosurveillance, European Centre for Disease Prevention and Control, 2019, 24 (8), pp.1-9. 10.2807/1560-7917.ES.2019.24.8.1800213. hal-02263770 HAL Id: hal-02263770 https://hal-amu.archives-ouvertes.fr/hal-02263770 Submitted on 6 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Surveillance Tracking Rift Valley fever: From Mali to Europe and other countries, 2016 Christelle Tong¹, Emilie Javelle², Gilda Grard3,4, Aissata Dia¹, Constance Lacrosse¹, Toscane Fourié3,4, Patrick Gravier3,4, Stéphanie Watier-Grillot¹, Renaud Lancelot5,6, Franck Letourneur⁷, Frédéric Comby⁸, Martin Grau⁹, Lionel Cassou10, Jean-Baptiste Meynard¹, Sébastien Briolant11,12, Isabelle Leparc-Goffart3,4, Vincent Pommier de Santi1,12 1. French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France 2. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. -
Cleveland Clinic Zika Virus
Zika Virus What is the Zika virus? The Zika virus is an arbovirus transmitted by mosquitoes. The Zika virus is thought to be linked to a rise in the cases of a birth defect called microcephaly. This defect leaves a baby with an abnormally small head and a shorter life expectancy. The baby’s brain is also small and is not completely developed. The Centers for Disease Control and Prevention (CDC) performed lab tests that suggest a link between the Zika virus and some of the more than 3,500 babies born in Brazil with microcephaly in 2015. The CDC is advising women who are pregnant or thinking of becoming pregnant to avoid going to countries in South America, Central America, Mexico, and the Caribbean, where the virus is rapidly spreading. What causes the Zika virus? The Zika virus is spread by mosquito bites from infected mosquitoes. In most cases, these mosquitoes are found in tropical regions. What are the symptoms of the Zika virus? Symptoms usually are mild, and include: Fever Skin rashes Conjunctivitis (pinkeye) Headaches Pain in the muscles and joints How is the Zika virus treated? Currently, there is no vaccine for the virus. The CDC recommends supportive care. If a person is sick with the Zika virus, he or she should drink lots of fluids, rest, and take medicine (Tylenol) for pain and fever. A person with the virus should see a doctor if symptoms get worse. How can the Zika virus be prevented? It is important to avoid mosquito bites. Insect repellents and public mosquito control measures can help cut down on the number of mosquitoes present. -
Mosquito-Borne Viruses, Insect-Specific
FULL PAPER Virology Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes SUPRIYONO1), Ryusei KUWATA1,2), Shun TORII1), Hiroshi SHIMODA1), Keita ISHIJIMA3), Kenzo YONEMITSU1), Shohei MINAMI1), Yudai KURODA3), Kango TATEMOTO3), Ngo Thuy Bao TRAN1), Ai TAKANO1), Tsutomu OMATSU4), Tetsuya MIZUTANI4), Kentaro ITOKAWA5), Haruhiko ISAWA6), Kyoko SAWABE6), Tomohiko TAKASAKI7), Dewi Maria YULIANI8), Dimas ABIYOGA9), Upik Kesumawati HADI10), Agus SETIYONO10), Eiichi HONDO11), Srihadi AGUNGPRIYONO10) and Ken MAEDA1,3)* 1)Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan 2)Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan 3)Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4)Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan 5)Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 6)Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1