Statistical Methods to Infer Biological Interactions George Jay Tucker

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Methods to Infer Biological Interactions George Jay Tucker Statistical methods to infer biological interactions by George Jay Tucker B.S., Harvey Mudd College (2008) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 c Massachusetts Institute of Technology 2014. All rights reserved. Author.............................................................. Department of Mathematics May 1, 2014 Certified by. Bonnie Berger Professor of Applied Mathematics Thesis Supervisor Accepted by . Michel X. Goemans Chairman, Applied Mathematics Committee 2 Statistical methods to infer biological interactions by George Jay Tucker Submitted to the Department of Mathematics on May 1, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Abstract Biological systems are extremely complex, and our ability to experimentally measure interactions in these systems is limited by inherent noise. Technological advances have allowed us to collect unprecedented amounts of raw data, increasing the need for computational methods to disentangle true interactions from noise. In this thesis, we focus on statistical methods to infer two classes of important biological interactions: protein-protein interactions and the link between genotypes and phenotypes. In the first part of the thesis, we introduce methods to infer protein-protein interactions from affinity purification mass spectrometry (AP-MS) and from luminescence-based mam- malian interactome mapping (LUMIER). Our work reveals novel context dependent interactions in the MAPK signaling pathway and insights into the protein homeostasis machinery. In the second part, we focus on methods to understand the link between genotypes and phenotypes. First, we characterize the effects of related individuals on standard association statistics for genome-wide association studies (GWAS) and introduce a new statistic that corrects for relatedness. Then, we introduce a sta- tistically powerful association testing framework that corrects for confounding from population structure in large scale GWAS. Lastly, we investigate regularized regres- sion for phenotype prediction from genetic data. Thesis Supervisor: Bonnie Berger Title: Professor of Applied Mathematics 3 4 Acknowledgments This journey would not have been possible without the many people that have sup- ported me throughout my time at MIT. First, I would like to thank my advisor, Bon- nie Berger, for her guidance and her unwavering support. I would also like to thank Alkes Price for welcoming me into his group meetings and journal clubs, for countless interesting discussions about medical genomics, and for mentorship as I learned about statistical genetics. My family and friends have supported me throughout my time here. In particular, my heartfelt thanks go to: Po-Ru Loh, for being an inspiration and exceptional friend. I will always be grateful that I had the chance to work with someone so hard-working, careful, considerate, and humble. Mark Lipson, for our discussions about research and everyday life over our weekly lunches. Jian Peng, for teaching me that research is difficult even if it feels like it shouldn't be and that's okay. The rest of the members of the Berger lab, in particular Alex Levin, Irene Kaplow, Leonid Chindelevitch, Deniz Yorukoglu, Fulton Wang and Sean Sim- mons, for teaching me how to do research. Patrice Macaluso, for keeping us sane and staving off chaos. Mikko Taipale, for being an amazing collaborator and general academic badass. Polina Golland, for welcoming me into her reading group and teaching me to ask questions about the \trivial" things that usually turn out to confuse everyone. Mark Behrens, for mentoring me through my short trip in Algebraic Topology and for being understanding. Lastly, I would like to thank my love, Holly Johnsen, who has been with me through the best and the darkest times of this journey. 5 6 Contents 1 Introduction 11 1.1 Inferring protein-protein interactions . 11 1.2 Statistical genetics . 15 I Inferring protein-protein interactions 19 2 Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal-Regulated Kinase Signaling 21 2.1 Introduction . 22 2.2 Results . 23 2.2.1 An RTK-Ras-ERK interaction network . 25 2.3 Discussion . 31 2.4 Materials and Methods . 34 2.4.1 RNAi screening . 34 2.4.2 TAP and mass spectrometry . 35 2.4.3 Computational analysis of TAP-MS data . 37 2.4.4 Additional statistical analysis . 38 2.4.5 Western blotting and coimmunoprecipitation . 39 2.4.6 In vivo analysis . 40 3 Incorporating quantitative mass spectrometry data in protein inter- action analysis 53 3.1 Introduction . 54 7 3.2 Results . 57 3.2.1 Sampling framework . 57 3.2.2 Validation on three AP-MS data sets . 61 3.3 Discussion . 62 3.3.1 Characterization of methods . 62 3.3.2 Low rank plus sparse matrix framework . 64 3.3.3 Moving toward complexes . 66 3.4 Conclusions . 66 3.5 Methods . 66 3.5.1 AP-MS data sets . 66 3.5.2 Validation data sets . 67 3.5.3 Implementation . 67 4 Inferring interactors from LUMIER using mixture models 71 4.1 Introduction . 71 4.2 LUMIER . 74 4.3 Methods . 75 4.3.1 Spatial Bias Model . 76 4.3.2 Background Luminescence Model . 80 4.4 An application to mapping chaperone, co-chaperone, and client interactions . 80 4.4.1 Experiment setup . 81 4.4.2 Preprocessing . 81 4.4.3 Validation . 81 4.4.4 Results . 83 4.5 Conclusion . 86 II Statistical genetics 87 5 Mixed models with related individuals 89 5.1 Introduction . 89 8 5.1.1 MLM statistics . 90 5.1.2 Expected statistics with unrelated individuals . 92 5.1.3 Expected statistics with related individuals . 93 5.2 Results . 96 5.2.1 Simulated genotypes and phenotypes . 96 5.2.2 CARe genotypes . 97 5.2.3 CARe phenotypes . 100 5.3 Statistical Methods . 101 5.3.1 MLM statistics . 101 5.3.2 Two variance component MLM statistics . 102 5.4 Conclusion . 102 6 Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select 105 6.1 Introduction . 105 6.2 Results . 106 6.3 Discussion . 110 6.4 Methods . 112 6.4.1 MS dataset . 112 6.4.2 Statistical methods . 112 7 Phenotype prediction using regularized regression on genetic data in the DREAM5 Systems Genetics B Challenge 117 7.1 Introduction . 118 7.2 Materials and Methods . 119 7.2.1 Dataset and challenge setup . 119 7.2.2 Preliminary ranking of predictors by correlation . 120 7.2.3 Rank transformation to reduce phenotype outliers . 121 7.2.4 Basis expansion to boolean combinations of genotype variables 122 7.2.5 Regularized regression modeling . 123 7.3 Results . 125 9 7.3.1 Modest performance of all regression techniques on training dataset . 125 7.3.2 Effectiveness of rank transformation on phenotype 1 . 126 7.3.3 Strong regularization in best-fit models . 126 7.3.4 High variance in performance on individual cross-validation folds and test set . 127 7.3.5 Official DREAM5 challenge results . 128 7.4 Discussion . 128 A Supporting Information for Incorporating quantitative mass spec- trometry data in protein interaction analysis 137 B Supporting Information for PC-Select 145 B.1 Model performance as the number of top SNPs to include in the GRM is varied. 145 B.2 Implementation . 146 10 Chapter 1 Introduction In this thesis, we focus on inferring two classes of important biological interactions: protein-protein interactions (PPI) and the link between genotypes and phenotypes. Biological systems are extremely complex and our ability to experimentally measure interactions is limited by inherent noise. Computational methods can identify pat- terns that are invisible to the human eye and disentangle true interactions from noise. Throughout this thesis we draw on a wide range of statistical methods to achieve this goal. In this chapter, we set the context for and summarize the main contributions of this thesis. 1.1 Inferring protein-protein interactions Proteins are the building blocks of cells, constituting most of the cell's dry mass and executing nearly all cell functions. However, proteins do not act alone; all proteins interact with other molecules, from enzymes catalyzing chemical reactions to pro- teins transmitting extracellular signals to change gene expression and protein levels. The biological properties of a protein depend on its physical interactions with other proteins. As such, an important way to begin characterizing the biological role of a protein is to identify its binding partners. In the past two decades, significant effort has been devoted to generating comprehensive PPI networks (e.g., [141, 61, 49, 51, 53]) to uncover the molecular basis of genetic interactions and provide functional roles for 11 proteins. These networks have been used as scaffolds to transfer known annotations to uncharacterized proteins in our lab and others. For example, IsoRank [119] and IsoRankN [80] predict functional orthologs across species by aligning PPI networks. In signaling network reconstruction, perturbation studies are used to reveal the critical components of the pathway. However, in many cases, these studies identify proteins that are not directly part of the core pathway. Huang et al. [59] and Yeger Lotem et al. [154] developed methods that use network flows and minimal trees in the PPI network to organize these disparate proteins into functionally coherent pathways. Before we can realize the benefits of a comprehensive PPI network, we first have to generate the interaction network. Mapping protein-protein interactions is ex- tremely time and labor intensive because of the sheer number of potential inter- actions. Mass spectrometry or affinity purification mass spectrometry (AP-MS) and yeast two-hybrid (Y2H) are two widely used high-throughput techniques for identi- fying protein interactions. The first large-scale PPI networks were generated for the model organism Saccharomyces cerevisiae, initially using yeast two-hybrid screens (Y2H) [141, 61] and subsequently by AP-MS [49, 56].
Recommended publications
  • DHX38 Antibody - Middle Region Rabbit Polyclonal Antibody Catalog # AI10980
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 DHX38 antibody - middle region Rabbit Polyclonal Antibody Catalog # AI10980 Specification DHX38 antibody - middle region - Product Information Application WB Primary Accession Q92620 Other Accession NM_014003, NP_054722 Reactivity Human, Mouse, Rat, Rabbit, Zebrafish, Pig, Horse, Bovine, Dog Predicted Human, Rat, WB Suggested Anti-DHX38 Antibody Rabbit, Zebrafish, Titration: 1.0 μg/ml Pig, Chicken Positive Control: OVCAR-3 Whole Cell Host Rabbit Clonality Polyclonal Calculated MW 140kDa KDa DHX38 antibody - middle region - Additional Information Gene ID 9785 Alias Symbol DDX38, KIAA0224, PRP16, PRPF16 Other Names Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16, 3.6.4.13, ATP-dependent RNA helicase DHX38, DEAH box protein 38, DHX38, DDX38, KIAA0224, PRP16 Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Reconstitution & Storage Add 50 ul of distilled water. Final anti-DHX38 antibody concentration is 1 mg/ml in PBS buffer with 2% sucrose. For longer periods of storage, store at 20°C. Avoid repeat freeze-thaw cycles. Precautions Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 DHX38 antibody - middle region is for research use only and not for use in diagnostic or therapeutic procedures. DHX38 antibody - middle region - Protein Information Name DHX38 Synonyms DDX38, KIAA0224, PRP16 Function Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:<a href="http://www.uniprot.org/c itations/29301961" target="_blank">29301961</a>, PubMed:<a href="http://www.uniprot.org/ci tations/9524131" target="_blank">9524131</a>).
    [Show full text]
  • Dissecting the Genetic Relationship Between Cardiovascular Risk Factors and Alzheimer's Disease
    UC San Diego UC San Diego Previously Published Works Title Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease. Permalink https://escholarship.org/uc/item/7137q6g1 Journal Acta neuropathologica, 137(2) ISSN 0001-6322 Authors Broce, Iris J Tan, Chin Hong Fan, Chun Chieh et al. Publication Date 2019-02-01 DOI 10.1007/s00401-018-1928-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Acta Neuropathologica https://doi.org/10.1007/s00401-018-1928-6 ORIGINAL PAPER Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer’s disease Iris J. Broce1 · Chin Hong Tan1,2 · Chun Chieh Fan3 · Iris Jansen4 · Jeanne E. Savage4 · Aree Witoelar5 · Natalie Wen6 · Christopher P. Hess1 · William P. Dillon1 · Christine M. Glastonbury1 · Maria Glymour7 · Jennifer S. Yokoyama8 · Fanny M. Elahi8 · Gil D. Rabinovici8 · Bruce L. Miller8 · Elizabeth C. Mormino9 · Reisa A. Sperling10,11 · David A. Bennett12 · Linda K. McEvoy13 · James B. Brewer13,14,15 · Howard H. Feldman14 · Bradley T. Hyman10 · Margaret Pericak‑Vance16 · Jonathan L. Haines17,18 · Lindsay A. Farrer19,20,21,22,23 · Richard Mayeux24,25,26 · Gerard D. Schellenberg27 · Kristine Yafe7,8,28 · Leo P. Sugrue1 · Anders M. Dale3,13,14 · Danielle Posthuma4 · Ole A. Andreassen5 · Celeste M. Karch6 · Rahul S. Desikan1 Received: 22 September 2018 / Revised: 28 October 2018 / Accepted: 28 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer’s disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether CV-associated genes also increase risk for AD.
    [Show full text]
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Computational Pan-Genomics: Status, Promises and Challenges
    bioRxiv preprint doi: https://doi.org/10.1101/043430; this version posted March 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Computational Pan-Genomics: Status, Promises and Challenges Tobias Marschall1,2, Manja Marz3,60,61,62, Thomas Abeel49, Louis Dijkstra6,7, Bas E. Dutilh8,9,10, Ali Ghaffaari1,2, Paul Kersey11, Wigard P. Kloosterman12, Veli M¨akinen13, Adam Novak15, Benedict Paten15, David Porubsky16, Eric Rivals17,63, Can Alkan18, Jasmijn Baaijens5, Paul I. W. De Bakker12, Valentina Boeva19,64,65,66, Francesca Chiaromonte20, Rayan Chikhi21, Francesca D. Ciccarelli22, Robin Cijvat23, Erwin Datema24,25,26, Cornelia M. Van Duijn27, Evan E. Eichler28, Corinna Ernst29, Eleazar Eskin30,31, Erik Garrison32, Mohammed El-Kebir5,33,34, Gunnar W. Klau5, Jan O. Korbel11,35, Eric-Wubbo Lameijer36, Benjamin Langmead37, Marcel Martin59, Paul Medvedev38,39,40, John C. Mu41, Pieter Neerincx36, Klaasjan Ouwens42,67, Pierre Peterlongo43, Nadia Pisanti44,45, Sven Rahmann29, Ben Raphael46,47, Knut Reinert48, Dick de Ridder50, Jeroen de Ridder49, Matthias Schlesner51, Ole Schulz-Trieglaff52, Ashley Sanders53, Siavash Sheikhizadeh50, Carl Shneider54, Sandra Smit50, Daniel Valenzuela13, Jiayin Wang70,71,72, Lodewyk Wessels56, Ying Zhang23,5, Victor Guryev16,12, Fabio Vandin57,34, Kai Ye68,69,72 and Alexander Sch¨onhuth5 1Center for Bioinformatics, Saarland University, Saarbr¨ucken, Germany; 2Max Planck Institute for Informatics, Saarbr¨ucken,
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Clinicopathological and Molecular Genetic Analysis of Low-Grade Glioma in Adults
    A CLINICOPATHOLOGICAL AND MOLECULAR GENETIC ANALYSIS OF LOW-GRADE GLIOMA IN ADULTS Presented by ANUSHREE SINGH MSc A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy Brain Tumour Research Centre Research Institute in Healthcare Sciences Faculty of Science and Engineering University of Wolverhampton November 2014 i DECLARATION This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgments, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Anushree Singh to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Anushree Date: 30th November 2014 ii ABSTRACT The aim of the study was to identify molecular markers that can determine progression of low grade glioma. This was done using various approaches such as IDH1 and IDH2 mutation analysis, MGMT methylation analysis, copy number analysis using array comparative genomic hybridisation and identification of differentially expressed miRNAs using miRNA microarray analysis. IDH1 mutation was present at a frequency of 71% in low grade glioma and was identified as an independent marker for improved OS in a multivariate analysis, which confirms the previous findings in low grade glioma studies.
    [Show full text]
  • A Misplaced Lncrna Causes Brachydactyly in Humans
    A misplaced lncRNA causes brachydactyly in humans Philipp G. Maass, … , Friedrich C. Luft, Sylvia Bähring J Clin Invest. 2012;122(11):3990-4002. https://doi.org/10.1172/JCI65508. Research Article Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape. Using chromosome conformation capturing, we identified a regulator on chromosome 12q that interacts in cis with PTHLH over a 24.4-megabase distance and in trans with the sex- determining region Y-box 9 (SOX9) gene on chromosome 17q. The element also harbored a long noncoding RNA (lncRNA). Silencing of the lncRNA, PTHLH, or SOX9 revealed a feedback mechanism involving an expression-dependent network in humans. In the BDE patients, the human lncRNA was upregulated by the disrupted chromosomal association. Moreover, the lncRNA occupancy at the PTHLH locus was reduced. Our results document what we believe to be a novel in cis– and in trans–acting DNA and lncRNA regulatory feedback element that is reciprocally regulated by coding genes. Furthermore, our findings provide a systematic and combinatorial view of how enhancers encoding lncRNAs may affect gene expression in normal development. Find the latest version: https://jci.me/65508/pdf Research article Related Commentary, page 3837 A misplaced lncRNA causes brachydactyly in humans Philipp G. Maass,1,2 Andreas Rump,3 Herbert Schulz,2 Sigmar Stricker,4 Lisanne Schulze,1,2 Konrad Platzer,3 Atakan Aydin,1,2 Sigrid Tinschert,3 Mary B.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular Mrnas
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs 2 3 4 Han Xiao1, Emanuel Wyler2#, Miha Milek2#, Bastian Grewe3, Philipp Kirchner4, Arif Ekici4, Ana Beatriz 5 Oliveira Villela Silva1, Doris Jungnickl1, Markus Landthaler2,5, Armin Ensser1, and Klaus Überla1* 6 7 1 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander 8 Universität Erlangen-Nürnberg, Erlangen, Germany 9 2 Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the 10 Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany 11 3 Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany 12 4 Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen- 13 Nürnberg, Erlangen, Germany 14 5 IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, 15 Germany 16 # these two authors contributed equally 17 18 19 *Corresponding author: 20 Prof. Dr. Klaus Überla 21 Institute of Clinical and Molecular Virology, University Hospital Erlangen 22 Friedrich-Alexander Universität Erlangen-Nürnberg 23 Schlossgarten 4, 91054 Erlangen 24 Germany 25 Tel: (+49) 9131-8523563 26 e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Structural Basis for DEAH-Helicase Activation by G-Patch Proteins
    Structural basis for DEAH-helicase activation by G-patch proteins Michael K. Studera, Lazar Ivanovica, Marco E. Webera, Sabrina Martia, and Stefanie Jonasa,1 aInstitute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved February 21, 2020 (received for review August 12, 2019) RNA helicases of the DEAH/RHA family are involved in many essential RNA bases are stacked in the RNA binding channel between a long cellular processes, such as splicing or ribosome biogenesis, where β-hairpin in RecA2 (β14 to β15 in hsDHX15/scPrp43; SI Appendix, they remodel large RNA–protein complexes to facilitate transitions Fig. S1) and a conserved loop in RecA1 (termed “Hook-turn”). to the next intermediate. DEAH helicases couple adenosine tri- This means that during progression into the open state, the phosphate (ATP) hydrolysis to conformational changes of their β-hairpin and two other RNA-binding patches in RecA2 (termed catalytic core. This movement results in translocation along RNA, “Hook-loop” and “motif V”; SI Appendix, Fig. S1) have to shift 1 which is held in place by auxiliary C-terminal domains. The activity nucleotide (nt) toward the 5′ end of the RNA. Thus, when the of DEAH proteins is strongly enhanced by the large and diverse RecA domains close back up, at the start of the next hydrolysis class of G-patch activators. Despite their central roles in RNA me- cycle, the RNA is pushed by 1 nt through the RNA channel.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • USP48 Governs Cell Cycle Progression by Regulating the Protein Level of Aurora B
    International Journal of Molecular Sciences Article USP48 Governs Cell Cycle Progression by Regulating the Protein Level of Aurora B Ainsley Mike Antao 1,†, Kamini Kaushal 1,† , Soumyadip Das 1, Vijai Singh 2 , Bharathi Suresh 1, Kye-Seong Kim 1,3,* and Suresh Ramakrishna 1,3,* 1 Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (A.M.A.); [email protected] (K.K.); [email protected] (S.D.); [email protected] (B.S.) 2 Department of Biosciences, School of Science, Indrashil University, Rajpur, Ahmedabad 382740, Gujarat, India; [email protected] 3 College of Medicine, Hanyang University, Seoul 04763, Korea * Correspondence: [email protected] (K.-S.K.); [email protected] (S.R.) † These authors contributed equally. Abstract: Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and Citation: Antao, A.M.; Kaushal, K.; stabilizes the Aurora B protein.
    [Show full text]