Opowie´Sci Algorytmiczne

Total Page:16

File Type:pdf, Size:1020Kb

Opowie´Sci Algorytmiczne 1 Opowie´sci algorytmiczne Wojciech Rytter Instytut Informatyki, Uniwersytet Warszawski, Warszawa 2 Algorytmika — nauka o algorytmach formalne modele algorytmu: Maszyna Turinga - niesko´nczona ta´sma, na kt´orej dokonuje sie֒ < lokalnych zmian; zbi´or mo˙zliwych zmian (stanu, pozycji na ta´smie, symbolu) jest zapisem (programem) algorytmu. W ˙zadnym wypadku nie jest to model do projektowania algorytm´ow, ale do dowodzenia, ˙ze algorytmu nie ma lub musi mie´cdu˙za֒ z lo˙zono´s´c Maszyna ze swobodnym dostepem֒ do pamieci֒ < RAM (Random Access Machine) .model zbli˙zony do praktycznego, bezpo´sredni dostep֒ do tablicy Maszyna Turinga da sie symulowa´cna RAMie w czasie wielomianowym i odwrotnie (RAM -> Maszyna Turinga) 3 Maszyna Turinga operuje na potencjalnie niesko´nczonej ta´smie s lowie, ciagu֒ symboli) kt´ora zawiera nieistotne symbole puste poza) sko´nczonym fragmentem. W ka˙zdym kroku symbol w ka˙zdym polu ta´smy zmienia sie֒ zgodnie z tabelka֒ maszyny, zale˙znie od ֒.poprzedniego symbolu w tym polu i w polach przylegajacych Dzieki֒ prostocie maszyny Turinga bardzo latwo mo˙zna pokaza´c w jaki spos´ob problem decyzyjny dla maszyny Turinga dzia lajacej֒ w czasie wielomianowym mo˙zna zredukowa´cdo problemu spe lnialno´sci formu llogicznych (jeszcze prostszy model oblicze´n, wyra˙zenie logiczne). Prostota pozwala na interpretacje opisu maszyny jako s lowo, kt´ore mo˙ze by´cdanymi wej´sciowymi dla innej (albo nawet tej samej) maszyny, jednocze´snie model jest na tyle silny by skonstruowa´c (uniwersalna֒ maszyne֒ Turinga (symulujac֒ a֒ wszystkie inne 4 Opis nieformalny dzia lania maszyny Turinga: ֒.Q - sko´nczony zbi´or stan´ow, wyr´o˙zniony stan poczatkowy Opis dzia lania - sko´nczony zbi´or instrukcji postaci: (aktualny stan, czytany symbol) (nastepny stan, nowy symbol, ֒ ⇒ .(przesuniecie֒ na ta´smie ,Konfiguracja inicjalna: stan poczatkowy,֒ pozycja pierwsza z lewej na ta´smie dane wej´sciowe zapisane jako s lowo, reszta ta´smy zawiera symbole puste (bierne). 5 Przyk lad dzia lania maszyny Turinga: znajduje pierwsze zero od lewej, zamienia na jedynke, poprzedzajace֒ jedynki zamienia na zera. Je´sli sa֒ same jedynki, to maszyna zamienia pierwszy symbol ֒:pusty # na jedynke.֒ Maszyna wykonuje operacje x := x + 1 (zapisane binarny liczby w odwrotnej kolejno´sci) 1 1 1 1 0 1 0 1 1 1 # 0 1 1 1 1 1 0 1 1 1 # q q q q 0 0 1 1 0 1 0 1 1 1 # 0 0 0 1 0 1 0 1 1 1 # STOP q 0 0 0 0 0 1 0 1 1 1 # 0 0 0 0 1 1 0 1 1 1 # 6 Maszyna Turinga da sie symulowa´cna RAMie w czasie wielomianowym i odwrotnie (RAM Maszyna Turinga) ⇒ Maszyna Turinga ma wiele r´o˙znych wersji: ta´sma niesko´czenie nieograniczona jednostronnie lub dwustronnie jedna ta´sma lub wiele ta´sm ta´sma jednowymiarowa lub dwuwymiarowa itd. maszyna deterministyczna lub nie. ֒:(Mo˙zemy ta´sme֒ zastapi´c(r´ownowa˙znie dwoma stosami jedna֒ kolejka֒ dwoma licznikami 7 (Hipoteza Churcha-Turinga (zwana r´ownie˙zTeza֒ Churcha-Turinga jest hipoteza֒ okre´slajac֒ a֒ mo˙zliwo´sci komputer´ow i innych maszyn obliczeniowych. M´owi ona, ˙ze ka˙zdy problem, dla kt´orego przy nieograniczonej pamieci֒ oraz zasobach istnieje efektywny algorytm .jego rozwiazywania,֒ da sie֒ rozwiaza´cna֒ maszynie Turinga Hipoteza jest niemo˙zliwa do sprawdzenia matematycznie. (Niby)formalna definicja hipotezy: Ka˙zdy problem, kt´ory mo˙ze by´cintuicyjnie uznany za .obliczalny, jest rozwiazywalny֒ przez maszyne֒ Turinga Prostota maszyny Turinga jest istotna w dowodach nierozstrzygalno´sci, metoda przekatniowa,֒ maszyna czyta sama֒ siebie i neguje sw´oj w lasny wynik). 8 Podstawowym problemem nierozstrzygalnym jest tzw. problem stopu maszyny Turinga (og´olnie algorytmu). Szkic (bardzo metny)֒ dowodu, ˙ze problem stopu jest nierozstrzygalny: za l´o˙zmy, ˙ze istnieje program S, kt´ory dla dowolnego programu P i danych D: zatrzymuje sie֒ i zwraca 1, je˙zeli P zatrzymuje sie֒ na danych < wej´sciowych D, oraz .zatrzymuje sie֒ i zwraca 0 w przeciwnym razie < Korzystajac֒ z programu S, mo˙zna napisa´cnowy program T, kt´ory ,dla dowolnego programu P zatrzymuje sie֒ wtedy i tylko wtedy kiedy P zapetla֒ sie֒ na swoim w lasnym kodzie podanym jako dane wej´sciowe. 9 Program T mo˙zna schematycznie zapisa´ctak: T(P): if S(P,P)=1 then loop else stop Pytanie: czy program T zatrzymuje sie֒ po otrzymaniu swojego w lasnego kodu jako danych wej´sciowych? Je˙zeli T zatrzymuje sie֒ na danych T, to S zwraca 1 dla programu T i danych T, czyli T sie֒ petli֒ na danych T — sprzeczno´s´c. Z kolei je˙zeli T sie֒ petli֒ na danych T, to S zwraca 0 dla programu T i danych T, czyli T sie֒ zatrzymuje na danych T — znowu sprzeczno´s´c. Wynika z tego, ˙ze za lo˙zenie o istnieniu programu S o podanych w lasno´sciach by lo .b ledne.֒ Zatem problem stopu jest nierozstrzygalny 10 Inne problemy nierozstrzygalne: > 10-ty problem Hilberta: ?Czy istnieje algorytm rozwiazywania֒ r´owna´ndiofantycznych Nierozstrzygalno´s´czosta la udowodniona w roku 1970 przez Yuri Matiyasevicha. > Problem odpowiednio´sci Posta (Post correspondence problem, w skr´ocie PCP): rozwa˙zmy zbi´or P par binarnych s l´ow: ∗ P = (l1,r1), (l2,r2),..., (l ,r ) , gdzie: l ,r Σ (1 i k) { k k } i i ∈ ≤ ≤ Czy dla danego P (ciagu֒ indeks´ow) istnieje rozwiazanie֒ systemu P + ( w1w2 ...w (1+2+ ... + k) ) ∃ s ∈ lw1 lw2 ...lws = rw1 rw2 ...rws 11 PCP postawiony przez Emila L. Posta w roku 1946. Problem te˙z mo˙zna sformu lowa´cjako pytanie, czy dla dw´och kodowa´n h, g : Σ (0+1)+ istnieje niepusty ciag x, kt´orego oba kody sa ֒ ֒ → takie same, tzn. h(x)= g(x). Wersja ograniczona (ograniczenie d lugo´sci x) jest NP-zupe lna. Σ = 2: problem rozstrzygalny (deterministyczny czas | | wielomianowy) Σ = 7: problem nierozstrzygalny | | 2 < Σ < 7: kwestia rozstrzygalno´sci jest problemem otwartym | | 12 Na przyk lad gdy ciag֒ par jest dany przez h(1)=0 h(2)=10 h(3)=10 g(1)=01 g(2)=0 g(3)=01 to h(132) = g(132) = 01010 Ale dla kodowania h(1)=1101, h(2)=0110 h(3)=1 g(1)=1 g(2)=11 g(3)=110 najkr´otszy x taki ˙ze teraz h(x)= g(x) ma d lugo´s´c 252 ֒.Nie ma sensownego ograniczenia na minimalna֒ d lugo´s´crozwiazania 13 Dla wielu wa˙znych problem´ow najtrudniejszym krokiem bylo pokazanie ich rozstrzygalno´sci, a dopiero potem analizowano i zmniejszano ich z lo˙zono´s´c(tutaj faktycznie sie֒ zaczyna algorytmika) Kilka przyk lad´ow problem´ow, kt´ore sa֒ rozstrzygalne, ale dla kt´orych istnieje dow´od, ˙ze na pewno nie ma dla nich algorytm´ow wielomianowych — dolne ograniczenie czasu dzia lania algorytmu jest co najmniej wyk ladnicze (czasami znacznie wy˙zsze). 14 > Arytmetyka Presburgera (rok 1929), czyli arytmetyka Peano bez mno˙zenia. Wbrew pozorom nie jest taka s laba i przydaje sie֒ w rozstrzygalno´sci innych problem´ow. Presburger udowodni l, ˙ze taka arytmetyka jest niesprzeczna i zupe lna (istnieje dow´od T lub negacji T ). Stad֒ wynika rozstrzygalno´s´c, ale czas dzia lania zgrubnego algorytmu jest niejasny. Najlepsze algorytmy w czasie potr´ojnie wyk ladniczym. 15 > Dolne oszacowanie z lo˙zono´sci jakiegokolwiek algorytmu dla tego problemu: Niech n bedzie֒ d lugo´scia֒ twierdzenia w arytmetyce Presburgera; Fischer i Rabin (1974) udowodnili, ˙ze ka˙zdy algorytm sprawdzajacy֒ prawdziwo´s´ctwierdzenia musi wykona´c cn w pesymistycznym przypadku co najmniej 22 krok´ow dla pewnej sta lej c> 0. Udowodnili r´ownie˙zistnienie twierdze´n, kt´orych dow´od ma ֒.d lugo´s´cco najmniej podw´ojnie wyk ladnicza 16 > Taka sama najlepsza g´orna granica czasowa (potr´ojnie wyk ladnicza) dla liczb rzeczywistych bez mno˙zenia. Dolna granica: wyk ladniczy czas niedeterministyczny. Problem osiagalno´sci֒ (reachability) w sieciach Petriego oraz w < tzw. vector addition systems. ,Znalezienie algorytmu zaje֒ lo kilkadziesiat֒ lat (Rao Kosaraju Ernst Mayr, STOC 1982). Najlepsze znane algorytmy (by´cmo˙ze) dzia laja֒ w pamieci֒ podw´ojnie wyk ladniczej (Bouziene, FOCS 1998), niestety znaleziono b ledy.֒ Najlepsze dolne oszacowanie z lo˙zono´sci algorytmu — czas pojedynczo wyk ladniczy. 17 > Wyra˙zenia regularne. Praktyczne zastosowanie przy wyszukiwaniu i edycji danych tekstowych. Wyra˙zenie jest wzorcem, kt´ory opisuje (jest jego :warto´scia)֒ zbi´or tekst´ow. Struktura wyra˙ze´n > konkretne s lowa, > x∗, zbi´or powt´orze´n x, > operacje teoriomnogo´sciowe, > Na przyk lad dla Σ= 0, 1 { } Σ∗0011Σ∗ Σ∗1010Σ∗ − oznacza wzorzec: tekst zawiera 0011 i nie zawiera 1010. 18 Sprawdzanie, czy istnieje jaki´stekst opisywany takim wyra˙zeniem, nie jest elementarnie rekurencyjne. Z lo˙zono´s´cczasowa tego problemu jest asymptotycznie wieksza֒ ni˙z ..n 22 222 .dla dowolnej d lugo´sci ciagu֒ dw´ojek Je´sli w wyra˙zeniu nie ma operacji negacji, to dolnym oszacowaniem √n/ log n .( z lo˙zono´sci pamieciowej֒ jest Ω(2 19 R´ownania na s lowach (r´ownania w p´o lgrupie wolnej). Gdy okaza lo sie,֒ ˙ze rozwiazywalno´s´cr´owna´ndiofantycznych֒ jest nierozstrzygalna, pr´obowano udowodni´cto samo dla r´owna´nna s lowach. Na przyk lad problem sprawdzenia, czy s lowo abaababab jest pods lowem s lowa abaababaaabababaababbaa sprowadza sie֒ do istnienia rozwiazania֒ r´ownania abaababaaabababaababbaa = x abaababab y Udowodniono, ˙ze problem jest rozstrzygalny. Pierwszy algorytm, podany przez G. Makanina, mia lz lo˙zono´s´cnieelementarna֒ i by l jednym z najbardziej skomplikowanych algorytm´ow. Najlepszy znany algorytm, algorytm W. Plandowskiego z Instytutu ֒.Informatyki U.W., ma wielomianowa֒ z lo˙zono´s´cpamieciow֒ a To by ly przyk lady problem´ow rozstrzygalnych, ale bardzo trudnych.
Recommended publications
  • Topology in Distributed Computing
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). Topology in Distributed Computing DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Technische Informatik ausgeführt von Thomas Nowak Matrikelnummer 0425201 an der Fakultät für Informatik der Technischen Universität Wien Betreuer: Univ.Prof. Dr. Ulrich Schmid Wien, 18.03.2010 _______________________ ______________________ (Unterschrift Verfasser) (Unterschrift Betreuer) Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at Erklärung Thomas Nowak Rechte Wienzeile 73/23 1050 Wien Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 18.03.2010 ______________________ (Unterschrift) Abstract Topology is the general mathematical theory of convergence. Distributed com- puting is the formal investigation of communicating concurrent processes. We explore applications of topology to distributed computing in two directions: (1) Point-set topology and (2) algebraic topology. We use the former to study the topological structure of infinite execution trees. This enables us to unify a number of impossibility proofs, in particular, the impossibility of distributed consensus — the task of all processes in a system agreeing on a single value — in various (close to) asynchronous systems with crash failures.
    [Show full text]
  • Why Extension-Based Proofs Fail
    Why Extension-Based Proofs Fail Dan Alistarh James Aspnes Faith Ellen IST Austria Yale University of Toronto [email protected] [email protected] [email protected] Rati Gelashvili Leqi Zhu University of Toronto University of Michigan [email protected] [email protected] August 2, 2020 Abstract We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k 2 processes in a wait-free manner in certain asynchronous models. However, it was unknown whether≥ proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained for one of these models by an extension- based proof and, hence, extension-based proofs are limited in power. 1 Introduction One of the most well-known results in the theory of distributed computing, due to Fischer, Lynch, and Paterson [FLP85], is that there is no deterministic, wait-free protocol solving consensus among n 2 processes in an asynchronous message passing system, even if at most one process may ≥ crash. Their result has been extended to asynchronous shared memory systems where processes communicate by reading from and writing to shared registers [Abr88, CIL87, Her91, LAA87]. Moses and Rajsbaum [MR02] gave a unified framework for proving the impossibility of consensus in a number of different systems. Chaudhuri [Cha93] conjectured that the impossibility of consensus could be generalized to the k-set agreement problem.
    [Show full text]
  • On the Asynchronous Computability Theorem
    On the Asynchronous Computability Theorem Rachid Guerraoui Petr Kouznetsov Bastian Pochon Distributed Programming Laboratory EPFL GETCO 2004 2/23 Characterization T 1 of wait-free computable decision tasks [Herlihy and Shavit, 1993, 1994] • representing decision tasks through simplicial complexes and simplicial maps • a task is solvable iff the corresponding complexes satisfy a topological property T 1 • long-standing impossibility results: set agreement [BG93, SZ93] and (n, 2n)-renaming GETCO 2004 3/23 [Borowsky and Gafni, 1997]: a “stronger” geometric property T 2 • a “simpler” algorithmic proof of T 2 • the equivalence of the properties: T 1 = T 2 (through proving a geometric result with a distributed algorithm) Why “stronger” and “simpler” ? What is the distributed algorithm? GETCO 2004 4/23 Decision task T = (I, O, ∆) [HS93] • I — chromatic input complex (a set of possible input simplexes) • O — chromatic output complex (a set of possible output simplexes) • ∆ ⊆ I × O — task specification (a color-preserving map that carries every input simplex to a set of output simplexes) GETCO 2004 5/23 Wait-free protocols Every process starts with an input value, executes a number of writes and reads of the shared memory, and finishes with an output value (applies a decision map to its final state). A protocol solves a task T = (I, O, ∆) if it satisfies the task specification: for any input simplex S ∈ I, any resulting output simplex O ∈ ∆(S). A protocol wait-free if every process finishes in a bounded number of its own steps, no matter how other processes behave. GETCO 2004 6/23 Herlihy and Shavit’s criterion [HS94] Theorem 1.
    [Show full text]
  • On the Space Complexity of Colourless Tasks by Leqi Zhu A
    On the Space Complexity of Colourless Tasks by Leqi Zhu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto c Copyright 2019 by Leqi Zhu Abstract On the Space Complexity of Colourless Tasks Leqi Zhu Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2019 In this thesis, we prove lower bounds on the number of registers needed to solve colourless tasks in asynchronous shared memory systems. Many fundamental synchronization tasks, such as consensus, k-set agreement, and -approximate agreement, are colourless. We show that it is possible to transform any nondeterministic solo-terminating algorithm (including any randomized wait-free algorithm) into an obstruction-free algorithm that uses the same number of registers. This result extends to algorithms using any finite number of deterministic objects that support read operations. Hence, we can focus on proving lower bounds for obstruction-free algorithms. We prove a tight lower bound on the number of registers needed to solve obstruction-free consensus. We also prove the first non-constant lower bounds on the number of registers needed to solve obstruction- free k-set agreement and obstruction-free -approximate agreement. The bound for k-set agreement is asymptotically tight when k is a constant and the bound for -approximate agreement is asymptotically tight when is sufficiently small. To prove these bounds, we introduce a new technique, revisionist simulations. This technique allows us to prove a general theorem that yields lower bounds on the number of registers needed to solve any colourless task in an obstruction-free manner.
    [Show full text]
  • K-Set Agreement Bounds in Round-Based Models Through Combinatorial Topology Adam Shimi, Armando Castañeda
    K-set agreement bounds in round-based models through combinatorial topology Adam Shimi, Armando Castañeda To cite this version: Adam Shimi, Armando Castañeda. K-set agreement bounds in round-based models through combina- torial topology. 39th ACM Symposium on Principles of Distributed Computing (PODC 2020), Aug 2020, Salerno, Italy. pp.395-404. hal-02950742 HAL Id: hal-02950742 https://hal.archives-ouvertes.fr/hal-02950742 Submitted on 28 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/26404 Official URL https://doi.org/10.1145/3382734.3405752 To cite this version: Shimi, Adam and Castañeda, Armando K-set agreement bounds in round-based models through combinatorial topology. (2020) In: 39th ACM Symposium on Principles of Distributed Computing (PODC 2020), 3 August 2020 - 7 August 2020 (Salerno,
    [Show full text]
  • Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All Rights Reserved
    Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum February 22, 2011 DRAFT 2 DRAFT Contents 1 Introduction 9 1.1 DecisionTasks .......................... 10 1.2 Communication.......................... 11 1.3 Failures .............................. 11 1.4 Timing............................... 12 1.4.1 ProcessesandProtocols . 12 1.5 ChapterNotes .......................... 14 2 Elements of Combinatorial Topology 15 2.1 Theobjectsandthemaps . 15 2.1.1 The Combinatorial View . 15 2.1.2 The Geometric View . 17 2.1.3 The Topological View . 18 2.2 Standardconstructions. 18 2.3 Chromaticcomplexes. 21 2.4 Simplicial models in Distributed Computing . 22 2.5 ChapterNotes .......................... 23 2.6 Exercises ............................. 23 3 Manifolds, Impossibility,DRAFT and Separation 25 3.1 ManifoldComplexes ....................... 25 3.2 ImmediateSnapshots. 28 3.3 ManifoldProtocols .. .. .. .. .. .. .. 34 3.4 SetAgreement .......................... 34 3.5 AnonymousProtocols . .. .. .. .. .. .. 38 3.6 WeakSymmetry-Breaking . 39 3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40 3.8 ChapterNotes .......................... 44 3.9 Exercises ............................. 44 3 4 CONTENTS 4 Connectivity 47 4.1 Consensus and Path-Connectivity . 47 4.2 Consensus in Asynchronous Read-Write Memory . 49 4.3 Set Agreement and Connectivity in Higher Dimensions . 53 4.4 Set Agreement and Read-Write memory . 59 4.4.1 Critical States . 63 4.5 ChapterNotes .......................... 64 4.6 Exercises ............................. 64 5 Colorless Tasks 67 5.1 Pseudospheres .......................... 68 5.2 ColorlessTasks .......................... 72 5.3 Wait-Free Read-Write Memory . 73 5.3.1 Read-Write Protocols and Pseudospheres . 73 5.3.2 Necessary and Sufficient Conditions . 75 5.4 Read-Write Memory with k-Set Agreement .
    [Show full text]
  • 15 Dynamics at the Boundary of Game Theory and Distributed Computing
    Dynamics at the Boundary of Game Theory and Distributed Computing AARON D. JAGGARD, U.S. Naval Research Laboratory 15 NEIL LUTZ, Rutgers University MICHAEL SCHAPIRA, Hebrew University of Jerusalem REBECCA N. WRIGHT, Rutgers University We use ideas from distributed computing and game theory to study dynamic and decentralized environments in which computational nodes, or decision makers, interact strategically and with limited information. In such environments, which arise in many real-world settings, the participants act as both economic and computa- tional entities. We exhibit a general non-convergence result for a broad class of dynamics in asynchronous settings. We consider implications of our result across a wide variety of interesting and timely applications: game dynamics, circuit design, social networks, Internet routing, and congestion control. We also study the computational and communication complexity of testing the convergence of asynchronous dynamics. Our work opens a new avenue for research at the intersection of distributed computing and game theory. CCS Concepts: • Theory of computation → Distributed computing models; Convergence and learn- ing in games;•Networks → Routing protocols; Additional Key Words and Phrases: Adaptive heuristics, self stabilization, game dynamics ACM Reference format: Aaron D. Jaggard, Neil Lutz, Michael Schapira, and Rebecca N. Wright. 2017. Dynamics at the Boundary of Game Theory and Distributed Computing. ACM Trans. Econ. Comput. 5, 3, Article 15 (August 2017), 20 pages. https://doi.org/10.1145/3107182 A preliminary version of some of this work appeared in Proceedings of the Second Symposium on Innovations in Computer Science (ICS 2011) [25]. This work was partially supported by NSF grant CCF-1101690, ISF grant 420/12, the Israeli Center for Research Excellence in Algorithms (I-CORE), and the Office of Naval Research.
    [Show full text]
  • The Topology of Local Computing in Networks
    The Topology of Local Computing in Networks Pierre Fraigniaud Institut de Recherche en Informatique Fondamentale, CNRS and Université de Paris, France Ami Paz Faculty of Computer Science, Universität Wien, Austria Abstract Modeling distributed computing in a way enabling the use of formal methods is a challenge that has been approached from different angles, among which two techniques emerged at the turn of the century: protocol complexes, and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects, typically a shared memory consisting of a collection of read-write registers. Our paper is concerned with network computing, where the processes are located at the nodes of a network, and communicate by exchanging messages along the edges of that network. Applying the topological approach for verification in network computing is a considerable challenge, mainly because the presence of identifiers assigned to the nodes yields protocol complexes whose size grows exponentially with the size of the underlying network. However, many of the problems studied in this context are of local nature, and their definitions do not depend on the identifiers or on the size of the network. We leverage this independence in order to meet the above challenge, and present local protocol complexes, whose sizes do not depend on the size of the network. As an application of the design of “compact” protocol complexes, we reformulate the celebrated lower bound of Ω(log∗ n) rounds for 3-coloring the n-node ring, in the algebraic topology framework. 2012 ACM Subject Classification Classification here Keywords and phrases Distributed computing, distributed graph algorithms, combinatorial topology.
    [Show full text]
  • EATCS Bulletin, Number 84, October 2004, Viii+258 Pp
    1 1 ISSN 0252–9742 Bulletin of the European Association for Theoretical Computer Science EATCS E A T C S Number 84 October 2004 1 1 2 2 2 2 3 3 C E A T C S B: P:M N D V P:J L T N P S G T:D J B S:B R S B E:V S U K O C M: P D I J K¨ F M. D-C I D P I J D´ S Jˇ´ S C R Z´ É H A T P J E G W T G H G USA D W G A G UK E W S K I J G W¨ T N J-P J F U Z I EATCS M TCS: M E:W B G G R T N A S F TCS E:G A I M M USA D S U K P P: M N (1972–1977)M P (1977–1979) A S (1979–1985)G R (1985–1994) W B (1994–1997)J D´ (1997–2002) 3 3 4 4 EATCS C M Giorgio Ausiello . [email protected] Wilfried Brauer . [email protected] Pierpaolo Degano . [email protected] Mariangiola Dezani-Ciancaglini . [email protected] Josep Díaz . [email protected] Zoltán Ésik . [email protected] Javier Esparza . [email protected] Hal Gabow . [email protected] Alan Gibbons . [email protected] Kazuo Iwama . [email protected] Dirk Janssens . [email protected] Jean-Pierre Jouannaud .
    [Show full text]
  • A Complete Bibliography of Publications in the Journal of Algorithms
    A Complete Bibliography of Publications in the Journal of Algorithms Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 13 October 2017 Version 1.05 Title word cross-reference (1 ≤ k ≤ m ≤ n) [Sem84]. (2 + ) [DIP02, QS02]. (h; k; 1) [Yao80]. (s; t) [Wei97]. 1 [GP87]. 2 [AS96b, ALS03, ADNP99, CHC99, Nag05, SˇZ05b].ˇ 2n2 [Hal97a]. 3 [ADNP99, BE05, DN99, DF86]. 4 [HZ01a]. 4; 5 [DN99]. 4=3 2 [Nag05, SˇZ05b].ˇ 5=3 [PS00]. 8=13 [Bl¨a04]. [1; 2;;n][Sem84]. [FL06]. 4 [BGLR99, NP04]. α [BDV02, II96]. B [GLW83]. d [vLW81]. ∆ [KN88, MS03]. E [Mal94b]. [Car01]. f [Ans85]. g [Mal94a]. GF(2) [CRS+00, SR03]. GF(qn) [LKPC05]. GF[2] [KL93]. GL(n; Z)[Fer87].h [SSO01, CDF01, GL98]. k [AS96a, AIKS91, ATUW01, ALP04, Ano98f, BYR02, BR97, BM05, BS95b, Bod90, BDGW98, CT99, DLSS95, DGK01, FKN99, Fer98, FJ83, FS96, HK02, HNZ02, KP98b, NH01, NRP96, Pem05a, PSY93, Raj95, Sch98, Sem84, She95, SU97, Sub99, Tur88, WPYK06, ZiNN96, vB00, BGLR99]. K3;3 [Che98c]. K5 [Che98c]. LUP [IMH82]. m [Etz86, GLD94, JZC04]. N [CS92, Fer87]. NC [CGM+95, ZSN97, NH01]. n log n [Kla99]. NR(1) [Asp80]. O(log ∗n)[PV98]. O(log n) [SV82a]. O(log n log log n)[CL95].O(m + n log n) [BK97]. O(N) [IM01b, HS81]. O(n1:3289)[BE05].O(N 2) 1 2 [TW84, EGMS94, HG88, MS94a, BK00].
    [Show full text]
  • Cortiñasrodriguez.Pdf (1.319Mb)
    ISBN: 978-84-694-5838-9 Abstract Consensus is one of the fundamental problems in fault tolerant distributed systems. In addition to the importance of the problem itself, consensus can be a way to solve many other problems in distributed systems, so it is considered a key topic in the Distributed Computing area. Although many solutions have been proposed to solve consensus in synchronous systems, [Fischer, Lynch, and Paterson, 1985] presented an impossibility result, namely Fischer-Lynch-Paterson or FLP, that states that it is impossible to reach consensus in asynchronous systems where even one process may crash. In order to circumvent FLP, [Chandra and Toueg, 1996] proposed the unreliable failure detector abstraction, which has been widely studied in several systems, specially those where processes can only fail by crashing. Failure detectors offer a modular approach that allows other applications such as consensus to use them as a building block. Additionally, the failure detector abstraction allows to encapsulate the synchrony assumptions of the system, so that applications which make use of failure detectors can be designed as if they run in pure asynchronous systems. In this work we show that failure detectors can also be applied to the general omission failure model, in which processes may fail by crashing and by omitting messages either when sending or receiving. As a practical example, we propose a solution to a security area problem called Secure Multiparty Computation by using failure detectors for general omission. In the context of failure detectors in the crash failure model we also study commu- nication efficiency, a performance measure achieved when there are only n links that carry messages forever, being n the number of processes.
    [Show full text]
  • Easy Impossibility Proofs for K-Set Agreement
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Easy Impossibility Proofs for k-Set Agreement DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Technische Informatik eingereicht von Kyrill Winkler, BSc. Matrikelnummer 0201623 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Univ.Prof. Dr. Ulrich Schmid Wien, 8. Oktober 2013 (Unterschrift Verfasser) (Unterschrift Betreuung) Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Easy Impossibility Proofs for k-Set Agreement MASTER’S THESIS submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Engineering by Kyrill Winkler, BSc. Registration Number 0201623 to the Faculty of Informatics at the Vienna University of Technology Advisor: Univ.Prof. Dr. Ulrich Schmid Vienna, 8. Oktober 2013 (Signature of Author) (Signature of Advisor) Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Kyrill Winkler, BSc. Ybbsstraße 27/17, 1020 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.
    [Show full text]