Sémantiques Géométriques Pour La Calculabilité Asynchrone

Total Page:16

File Type:pdf, Size:1020Kb

Sémantiques Géométriques Pour La Calculabilité Asynchrone NNT : 2019SACLX099 Sémantiques Géométriques pour la Calculabilité Asynchrone Thèse de doctorat de l'Université Paris-Saclay préparée à l’École Polytechnique École doctorale n°580 : Sciences et technologies de l’information et de la communication (STIC) Spécialité de doctorat: Informatique Thèse présentée et soutenue à Palaiseau, le 12 décembre 2019, par Jérémy Ledent Composition du Jury : Pierre Fraigniaud Directeur de Recherche, IRIF, Université Paris-Diderot Président Maurice Herlihy Professeur, Université de Brown Rapporteur Hans van Ditmarsch Professeur, LORIA Rapporteur Bernadette Charron-Bost Directrice de Recherche, LIX, École Polytechnique Examinatrice Yoram Moses Professeur, Technion – Israel Institute of Technology Examinateur Éric Goubault Professeur, LIX, École Polytechnique Directeur de thèse Samuel Mimram Professeur, LIX, École Polytechnique Co-Directeur de thèse Remerciements Je remercie tout d’abord Sam et Éric, mes deux directeurs de thèse. Vous avez su me guider dans mes recherches, tout en me laissant la liberté d’explorer mes propres idées. Merci Éric pour ta disponibilité à toute épreuve, malgré tes responsabilités au sein du laboratoire. Je ne compte plus les e-mails reçus de ta part le dimanche à 23h. Merci Samuel pour tes conseils de rédaction, et pour nos nombreuses discussions scientifiques. Tu m’as appris à toujours chercher les adjonctions et à exhiber les propriétés universelles. Merci à vous deux pour toutes les connaissances que vous avez partagées avec moi. Je remercie également mes deux rapporteurs, Hans et Maurice. Je suis infiniment reconnaissant pour votre relecture minutieuse de ce manuscrit. Merci pour la pertinence de vos remarques sur mon travail, et pour l’intérêt que vous portez à mes recherches. Merci aussi aux autres membres du jury, Bernadette, Pierre et Yoram, de m’accorder un peu de votre temps et de votre expertise. Merci tout particulièrement à Sergio Rajsbaum pour notre collaboration fructueuse sur la logique épistémique. Nos multiples discussions tout au long de ma thèse ont grandement contribué à faire avancer mon travail. Merci de m’avoir permis de découvrir le Mexique, sa culture et sa cuisine. Merci aussi à Marijana qui m’a accompagné dans cette aventure mexicaine, et dans l’article qui en a résulté. Je remercie chaleureusement toutes les autres personnes avec qui j’ai eu la chance de discuter de sujets scientifiques, lors des diverses rencontres et conférences auxquelles j’ai participées. Je pense notamment à Uli Fahrenberg, Martin Raussen, Krzysztof Ziemianski,´ Armando Castañeda, Petr Kuznetsov, et bien d’autres. Merci également aux professeurs qui m’ont donné le goût de l’informatique théorique, de la sémantique et de la théorie des catégories : Daniel Hirschkoff, Paul-André Melliès, et tout particulièrement Emmanuel Haucourt, sans qui je ne me serais sans doute pas tourné vers ce sujet de thèse. Merci aussi à mes propres élèves, avec qui j’ai découvert mon intérêt pour l’enseignement. Merci à tous les membres du labo, avec qui j’ai partagé bureaux, pauses café et repas du midi : Adina, Aurélien, Benjamin, Bibek, Cameron, Emmanuel, François, Franck, Jérémy, Maxime, Nicolas, Patrick, Pierre-Yves, Robin, Sergio, Simon, Sylvie, Thibaut, Uli. Merci pour vos discussions amicales et votre bonne humeur. Je vous dois les souvenirs chaleureux de mon passage au LIX. Un grand merci également aux gestionnaires, Évelyne, Vanessa et Catherine, pour leur travail et leur efficacité. Merci à tous mes amis de l’ENS Lyon et d’avant. Armaël et Pierre, avec qui j’ai partagé les galères de la rédaction de thèse ; Antoine, Cyprien, Tito, et les autres réguliers d’IRC ; et mes amis de prépa, Thomas, Paul, Palama, Térence, Bilou, Gaëtan, Lama, Nicolas, Ioum, Dimitri, Johan, Bastien. Mon passage à Fermat reste intégralement dans mon cœur. Merci à ma famille, Maman, Papa, Violaine et Nico, qui ont su respecter mes moments de vacances 3 en n’évoquant qu’avec parcimonie le sujet délicat de l’avancement de ma thèse. Et enfin, merci Marie, merci d’exister, tout simplement. À Martin, avec qui j’ai publié mon tout premier article. J’aurais été très fier de pouvoir te faire lire cette thèse, C’est avec grand honneur que je te la dédie. 4 Contents Résumé en Francais9 Introduction 15 1 Preliminaries 21 1.1 The distributed computing setting ............................. 21 1.1.1 Tasks ........................................ 21 1.1.2 Processes, programs and protocols......................... 22 1.1.3 The (un)importance of crashes........................... 23 1.1.4 Shared objects ................................... 24 1.2 Combinatorial topology................................... 24 1.2.1 Simplicial complexes and simplicial maps..................... 24 1.2.2 Carrier maps .................................... 26 1.2.3 The standard chromatic subdivision........................ 27 1.2.4 Pseudomanifolds with boundary.......................... 28 1.2.5 Sperner’s lemma .................................. 28 1.2.6 The Index lemma.................................. 29 1.3 Distributed computing through combinatorial topology.................. 32 1.3.1 The task specification................................ 32 1.3.2 The protocol complex ............................... 34 1.3.3 Definition of solvability .............................. 37 1.4 A case study: solvability of Equality Negation tasks.................... 37 1.4.1 Solvable cases ................................... 40 1.4.2 Impossibility proof when k is small........................ 41 1.4.3 Impossibility proof when n − k is odd....................... 43 1.4.4 Discussion on the number of input values..................... 47 2 Trace semantics 49 2.1 A first approach....................................... 52 2.1.1 Objects specifications................................ 52 2.1.2 Tasks ........................................ 54 5 2.1.3 Protocols...................................... 55 2.1.4 Protocol Complex ................................. 58 2.1.5 Limits of this approach............................... 60 2.2 Specifying concurrent objects................................ 61 2.2.1 Objects vs Tasks .................................. 63 2.2.2 Concurrent specifications.............................. 64 2.2.3 Comparison of linearizability-based techniques.................. 67 2.3 A computational model................................... 78 2.3.1 Programs and protocols............................... 78 2.3.2 Semantics of a protocol............................... 79 2.4 From trace semantics to geometric semantics ....................... 83 2.4.1 Tasks as one-shot objects.............................. 84 2.4.2 Simplicial tasks................................... 90 2.4.3 The protocol complex ............................... 91 2.4.4 A generalized asynchronous computability theorem................ 92 2.5 Towards game semantics for fault-tolerant protocols.................... 95 2.5.1 What is game semantics?.............................. 95 2.5.2 Back to our computational model ......................... 97 2.5.3 A game semantics for fault-tolerant protocols................... 99 3 Epistemic logic semantics 109 3.1 Preliminaries ........................................111 3.1.1 Syntax .......................................111 3.1.2 Kripke semantics..................................112 3.1.3 Dynamic Epistemic Logic .............................114 3.2 Simplicial complex models for Dynamic Epistemic Logic . 116 3.2.1 Simplicial models .................................117 3.2.2 Equivalence between simplicial and Kripke models . 119 3.2.3 Soundness and completeness............................122 3.2.4 Relaxing the locality condition...........................124 3.2.5 A simplicial product update model.........................125 3.3 Distributed computing through Dynamic Epistemic Logic . 127 3.3.1 Protocols as action models.............................128 3.3.2 Tasks as action models...............................134 3.3.3 DEL definition of task solvability .........................136 3.4 Examples ..........................................137 3.4.1 Consensus .....................................137 3.4.2 Approximate agreement ..............................138 3.4.3 2-Set agreement ..................................140 3.5 Limits of the DEL approach ................................141 3.5.1 Bisimulation between simplicial models......................141 3.5.2 The equality negation task.............................142 3.6 Extended DEL .......................................145 6 3.6.1 Unsolvability of equality negation and 2-set-agreement . 146 3.6.2 Perspectives of the Extended DEL approach....................149 3.7 Conclusion and future work.................................150 4 Towards directed topological semantics 153 4.1 Preliminaries ........................................156 4.1.1 Higher-dimensional automata ...........................157 4.1.2 Notions of paths on HDAs.............................159 4.2 Relating trace semantics and paths on HDAs........................161 4.2.1 Three simple bijections...............................162 4.2.2 Chromatic subdivisions via partial cube chains ..................167 4.3 Future work and open questions ..............................171 Conclusion 177 Bibliography 179 7 Résumé en Français Tout système informatique distribué est sujet à des pannes. Le type de panne le plus courant est celui des systèmes par passage de message, où des ordinateurs distants doivent communiquer entre eux pour parvenir à accomplir une tâche en commun. Par exemple,
Recommended publications
  • Topology in Distributed Computing
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). Topology in Distributed Computing DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Technische Informatik ausgeführt von Thomas Nowak Matrikelnummer 0425201 an der Fakultät für Informatik der Technischen Universität Wien Betreuer: Univ.Prof. Dr. Ulrich Schmid Wien, 18.03.2010 _______________________ ______________________ (Unterschrift Verfasser) (Unterschrift Betreuer) Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at Erklärung Thomas Nowak Rechte Wienzeile 73/23 1050 Wien Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 18.03.2010 ______________________ (Unterschrift) Abstract Topology is the general mathematical theory of convergence. Distributed com- puting is the formal investigation of communicating concurrent processes. We explore applications of topology to distributed computing in two directions: (1) Point-set topology and (2) algebraic topology. We use the former to study the topological structure of infinite execution trees. This enables us to unify a number of impossibility proofs, in particular, the impossibility of distributed consensus — the task of all processes in a system agreeing on a single value — in various (close to) asynchronous systems with crash failures.
    [Show full text]
  • Why Extension-Based Proofs Fail
    Why Extension-Based Proofs Fail Dan Alistarh James Aspnes Faith Ellen IST Austria Yale University of Toronto [email protected] [email protected] [email protected] Rati Gelashvili Leqi Zhu University of Toronto University of Michigan [email protected] [email protected] August 2, 2020 Abstract We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k 2 processes in a wait-free manner in certain asynchronous models. However, it was unknown whether≥ proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained for one of these models by an extension- based proof and, hence, extension-based proofs are limited in power. 1 Introduction One of the most well-known results in the theory of distributed computing, due to Fischer, Lynch, and Paterson [FLP85], is that there is no deterministic, wait-free protocol solving consensus among n 2 processes in an asynchronous message passing system, even if at most one process may ≥ crash. Their result has been extended to asynchronous shared memory systems where processes communicate by reading from and writing to shared registers [Abr88, CIL87, Her91, LAA87]. Moses and Rajsbaum [MR02] gave a unified framework for proving the impossibility of consensus in a number of different systems. Chaudhuri [Cha93] conjectured that the impossibility of consensus could be generalized to the k-set agreement problem.
    [Show full text]
  • On the Asynchronous Computability Theorem
    On the Asynchronous Computability Theorem Rachid Guerraoui Petr Kouznetsov Bastian Pochon Distributed Programming Laboratory EPFL GETCO 2004 2/23 Characterization T 1 of wait-free computable decision tasks [Herlihy and Shavit, 1993, 1994] • representing decision tasks through simplicial complexes and simplicial maps • a task is solvable iff the corresponding complexes satisfy a topological property T 1 • long-standing impossibility results: set agreement [BG93, SZ93] and (n, 2n)-renaming GETCO 2004 3/23 [Borowsky and Gafni, 1997]: a “stronger” geometric property T 2 • a “simpler” algorithmic proof of T 2 • the equivalence of the properties: T 1 = T 2 (through proving a geometric result with a distributed algorithm) Why “stronger” and “simpler” ? What is the distributed algorithm? GETCO 2004 4/23 Decision task T = (I, O, ∆) [HS93] • I — chromatic input complex (a set of possible input simplexes) • O — chromatic output complex (a set of possible output simplexes) • ∆ ⊆ I × O — task specification (a color-preserving map that carries every input simplex to a set of output simplexes) GETCO 2004 5/23 Wait-free protocols Every process starts with an input value, executes a number of writes and reads of the shared memory, and finishes with an output value (applies a decision map to its final state). A protocol solves a task T = (I, O, ∆) if it satisfies the task specification: for any input simplex S ∈ I, any resulting output simplex O ∈ ∆(S). A protocol wait-free if every process finishes in a bounded number of its own steps, no matter how other processes behave. GETCO 2004 6/23 Herlihy and Shavit’s criterion [HS94] Theorem 1.
    [Show full text]
  • Asphalion: Trustworthy Shielding Against Byzantine Faults
    Asphalion: Trustworthy Shielding Against Byzantine Faults IVANA VUKOTIC, SnT, University of Luxembourg VINCENT RAHLI, University of Birmingham PAULO ESTEVES-VERÍSSIMO, SnT, University of Luxembourg Byzantine fault-tolerant state-machine replication (BFT-SMR) is a technique for hardening systems to tolerate arbitrary faults. Although robust, BFT-SMR protocols are very costly in terms of the number of required replicas (3f + 1 to tolerate f faults) and of exchanged messages. However, with “hybrid” architectures, where “normal” components trust some “special” components to provide properties in a trustworthy manner, the cost of using BFT can be dramatically reduced. Unfortunately, even though such hybridization techniques decrease the message/time/space complexity of BFT protocols, they also increase their structural complexity. Therefore, we introduce Asphalion, the first theorem prover-based framework for verifying implementations of hybrid systems and protocols. It relies on three novel languages: (1) HyLoE: a Hybrid Logic of Events to reason about hybrid fault models; (2) MoC: a Monadic Component language to implement systems as collections of interacting hybrid components; and (3) LoCK: a sound Logic Of events-based Calculus of Knowledge to reason about both homogeneous and hybrid systems at a high-level of abstraction (thereby allowing reusing proofs, and capturing the high-level logic of distributed systems). In addition, Asphalion supports compositional reasoning, e.g., through mechanisms to lift properties about trusted-trustworthy components, to the level of the distributed systems they are integrated in. As a case study, we have verified crucial safety properties (e.g., agreement) of several implementations of hybrid protocols. CCS Concepts: • Theory of computation → Logic and verification.
    [Show full text]
  • On the Space Complexity of Colourless Tasks by Leqi Zhu A
    On the Space Complexity of Colourless Tasks by Leqi Zhu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto c Copyright 2019 by Leqi Zhu Abstract On the Space Complexity of Colourless Tasks Leqi Zhu Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2019 In this thesis, we prove lower bounds on the number of registers needed to solve colourless tasks in asynchronous shared memory systems. Many fundamental synchronization tasks, such as consensus, k-set agreement, and -approximate agreement, are colourless. We show that it is possible to transform any nondeterministic solo-terminating algorithm (including any randomized wait-free algorithm) into an obstruction-free algorithm that uses the same number of registers. This result extends to algorithms using any finite number of deterministic objects that support read operations. Hence, we can focus on proving lower bounds for obstruction-free algorithms. We prove a tight lower bound on the number of registers needed to solve obstruction-free consensus. We also prove the first non-constant lower bounds on the number of registers needed to solve obstruction- free k-set agreement and obstruction-free -approximate agreement. The bound for k-set agreement is asymptotically tight when k is a constant and the bound for -approximate agreement is asymptotically tight when is sufficiently small. To prove these bounds, we introduce a new technique, revisionist simulations. This technique allows us to prove a general theorem that yields lower bounds on the number of registers needed to solve any colourless task in an obstruction-free manner.
    [Show full text]
  • Sok: a Consensus Taxonomy in the Blockchain Era*
    SoK: A Consensus Taxonomy in the Blockchain Era* Juan A. Garay Aggelos Kiayias† Texas A&M University University of Edinburgh & IOHK [email protected] [email protected] Sunday 8th December, 2019 Abstract Consensus is arguably one of the most fundamental problems in distributed computing, playing also an important role in the area of cryptographic protocols as the enabler of a secure broadcast functionality. While the problem has a long and rich history and has been analyzed from many dif- ferent perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has experienced renewed interest from a much wider community of researchers and has seen its application expand to various novel settings. One of the main issues in consensus research is the many different variants of the problem that exist as well as the various ways the problem behaves when different setup, computational assump- tions and network models are considered. In this work we perform a systematization of knowledge in the landscape of consensus research in the Byzantine failure model starting with the original formu- lation in the early 1980s up to the present blockchain-based new class of consensus protocols. Our work is a roadmap for studying the consensus problem under its many guises, classifying the way it operates in the various settings and highlighting the exciting new applications that have emerged in the blockchain era. 1 Introduction The consensus problem—reaching agreement distributedly in the presence of faults—has been exten- sively studied in the literature starting with the seminal work of Shostak, Pease and Lamport [PSL80, LSP82].
    [Show full text]
  • K-Set Agreement Bounds in Round-Based Models Through Combinatorial Topology Adam Shimi, Armando Castañeda
    K-set agreement bounds in round-based models through combinatorial topology Adam Shimi, Armando Castañeda To cite this version: Adam Shimi, Armando Castañeda. K-set agreement bounds in round-based models through combina- torial topology. 39th ACM Symposium on Principles of Distributed Computing (PODC 2020), Aug 2020, Salerno, Italy. pp.395-404. hal-02950742 HAL Id: hal-02950742 https://hal.archives-ouvertes.fr/hal-02950742 Submitted on 28 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/26404 Official URL https://doi.org/10.1145/3382734.3405752 To cite this version: Shimi, Adam and Castañeda, Armando K-set agreement bounds in round-based models through combinatorial topology. (2020) In: 39th ACM Symposium on Principles of Distributed Computing (PODC 2020), 3 August 2020 - 7 August 2020 (Salerno,
    [Show full text]
  • Self-Sorting SSD: Producing Sorted Data Inside Active Ssds
    Foreword This volume contains the papers presentedat the Third Israel Symposium on the Theory of Computing and Systems (ISTCS), held in Tel Aviv, Israel, on January 4-6, 1995. Fifty five papers were submitted in response to the Call for Papers, and twenty seven of them were selected for presentation. The selection was based on originality, quality and relevance to the field. The program committee is pleased with the overall quality of the acceptedpapers and, furthermore, feels that many of the papers not used were also of fine quality. The papers included in this proceedings are preliminary reports on recent research and it is expected that most of these papers will appear in a more complete and polished form in scientific journals. The proceedings also contains one invited paper by Pave1Pevzner and Michael Waterman. The program committee thanks our invited speakers,Robert J. Aumann, Wolfgang Paul, Abe Peled, and Avi Wigderson, for contributing their time and knowledge. We also wish to thank all who submitted papers for consideration, as well as the many colleagues who contributed to the evaluation of the submitted papers. The latter include: Noga Alon Alon Itai Eric Schenk Hagit Attiya Roni Kay Baruch Schieber Yossi Azar Evsey Kosman Assaf Schuster Ayal Bar-David Ami Litman Nir Shavit Reuven Bar-Yehuda Johan Makowsky Richard Statman Shai Ben-David Yishay Mansour Ray Strong Allan Borodin Alain Mayer Eli Upfal Dorit Dor Mike Molloy Moshe Vardi Alon Efrat Yoram Moses Orli Waarts Jack Feldman Dalit Naor Ed Wimmers Nissim Francez Seffl Naor Shmuel Zaks Nita Goyal Noam Nisan Uri Zwick Vassos Hadzilacos Yuri Rabinovich Johan Hastad Giinter Rote The work of the program committee has been facilitated thanks to software developed by Rob Schapire and FOCS/STOC program chairs.
    [Show full text]
  • Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All Rights Reserved
    Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum February 22, 2011 DRAFT 2 DRAFT Contents 1 Introduction 9 1.1 DecisionTasks .......................... 10 1.2 Communication.......................... 11 1.3 Failures .............................. 11 1.4 Timing............................... 12 1.4.1 ProcessesandProtocols . 12 1.5 ChapterNotes .......................... 14 2 Elements of Combinatorial Topology 15 2.1 Theobjectsandthemaps . 15 2.1.1 The Combinatorial View . 15 2.1.2 The Geometric View . 17 2.1.3 The Topological View . 18 2.2 Standardconstructions. 18 2.3 Chromaticcomplexes. 21 2.4 Simplicial models in Distributed Computing . 22 2.5 ChapterNotes .......................... 23 2.6 Exercises ............................. 23 3 Manifolds, Impossibility,DRAFT and Separation 25 3.1 ManifoldComplexes ....................... 25 3.2 ImmediateSnapshots. 28 3.3 ManifoldProtocols .. .. .. .. .. .. .. 34 3.4 SetAgreement .......................... 34 3.5 AnonymousProtocols . .. .. .. .. .. .. 38 3.6 WeakSymmetry-Breaking . 39 3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40 3.8 ChapterNotes .......................... 44 3.9 Exercises ............................. 44 3 4 CONTENTS 4 Connectivity 47 4.1 Consensus and Path-Connectivity . 47 4.2 Consensus in Asynchronous Read-Write Memory . 49 4.3 Set Agreement and Connectivity in Higher Dimensions . 53 4.4 Set Agreement and Read-Write memory . 59 4.4.1 Critical States . 63 4.5 ChapterNotes .......................... 64 4.6 Exercises ............................. 64 5 Colorless Tasks 67 5.1 Pseudospheres .......................... 68 5.2 ColorlessTasks .......................... 72 5.3 Wait-Free Read-Write Memory . 73 5.3.1 Read-Write Protocols and Pseudospheres . 73 5.3.2 Necessary and Sufficient Conditions . 75 5.4 Read-Write Memory with k-Set Agreement .
    [Show full text]
  • SIGACT Viability
    SIGACT Name and Mission: SIGACT: SIGACT Algorithms & Computation Theory The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is interpreted broadly so as to include algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. Newsletters: Volume Issue Issue Date Number of Pages Actually Mailed 2014 45 01 March 2014 N/A 2013 44 04 December 2013 104 27-Dec-13 44 03 September 2013 96 30-Sep-13 44 02 June 2013 148 13-Jun-13 44 01 March 2013 116 18-Mar-13 2012 43 04 December 2012 140 29-Jan-13 43 03 September 2012 120 06-Sep-12 43 02 June 2012 144 25-Jun-12 43 01 March 2012 100 20-Mar-12 2011 42 04 December 2011 104 29-Dec-11 42 03 September 2011 108 29-Sep-11 42 02 June 2011 104 N/A 42 01 March 2011 140 23-Mar-11 2010 41 04 December 2010 128 15-Dec-10 41 03 September 2010 128 13-Sep-10 41 02 June 2010 92 17-Jun-10 41 01 March 2010 132 17-Mar-10 Membership: based on fiscal year dates 1st Year 2 + Years Total Year Professional
    [Show full text]
  • Federated Computing Research Conference, FCRC’96, Which Is David Wise, Steering Being Held May 20 - 28, 1996 at the Philadelphia Downtown Marriott
    CRA Workshop on Academic Careers Federated for Women in Computing Science 23rd Annual ACM/IEEE International Symposium on Computing Computer Architecture FCRC ‘96 ACM International Conference on Research Supercomputing ACM SIGMETRICS International Conference Conference on Measurement and Modeling of Computer Systems 28th Annual ACM Symposium on Theory of Computing 11th Annual IEEE Conference on Computational Complexity 15th Annual ACM Symposium on Principles of Distributed Computing 12th Annual ACM Symposium on Computational Geometry First ACM Workshop on Applied Computational Geometry ACM/UMIACS Workshop on Parallel Algorithms ACM SIGPLAN ‘96 Conference on Programming Language Design and Implementation ACM Workshop of Functional Languages in Introductory Computing Philadelphia Skyline SIGPLAN International Conference on Functional Programming 10th ACM Workshop on Parallel and Distributed Simulation Invited Speakers Wm. A. Wulf ACM SIGMETRICS Symposium on Burton Smith Parallel and Distributed Tools Cynthia Dwork 4th Annual ACM/IEEE Workshop on Robin Milner I/O in Parallel and Distributed Systems Randy Katz SIAM Symposium on Networks and Information Management Sponsors ACM CRA IEEE NSF May 20-28, 1996 SIAM Philadelphia, PA FCRC WELCOME Organizing Committee Mary Jane Irwin, Chair Penn State University Steve Mahaney, Vice Chair Rutgers University Alan Berenbaum, Treasurer AT&T Bell Laboratories Frank Friedman, Exhibits Temple University Sampath Kannan, Student Coordinator Univ. of Pennsylvania Welcome to the second Federated Computing Research Conference, FCRC’96, which is David Wise, Steering being held May 20 - 28, 1996 at the Philadelphia downtown Marriott. This second Indiana University FCRC follows the same model of the highly successful first conference, FCRC’93, in Janice Cuny, Careers which nine constituent conferences participated.
    [Show full text]
  • Expert Report of Maurice P. Herlihy in Securities and Exchange Commission V
    Case 1:19-cv-09439-PKC Document 117 Filed 01/27/20 Page 1 of 33 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK ------------------------------------------------------------------------ x SECURITIES AND EXCHANGE COMMISSION, : : Plaintiff, : 19 Civ. 09439 (PKC) : - against - : ECF Case : TELEGRAM GROUP INC. and TON ISSUER INC. : : Defendants. : : ----------------------------------------------------------------------- x DECLARATION OF MAURICE P. HERLIHY I, Maurice P. Herlihy, pursuant to 28 U.S.C. § 1746, declare: 1. I hold the An Wang Chair of Computer Science at Brown University. 2. I was retained by the Plaintiff Securities and Exchange Commission (“SEC”), through the firm Integra FEC LLC, in connection with this case and was asked to review certain documents and source code prepared by the Defendants in this case, as well as certain other materials, and opine on certain matters, including: (1) the status of the publically released test version of the Telegram Open Network (“TON”) Blockchain code; (2) whether the proposed TON Blockchain is secure and will perform as planned; and (3) the current state and nature of various proposed applications that may run on the TON Blockchain and whether the TON Blockchain is currently mature enough to support them. 3. I respectfully submit this declaration in support of the Plaintiff SEC’s Motion for Summary Judgment and in further support of the SEC’s Emergency Application for an Order to Show Cause, Temporary Restraining Order, and Order Granting Expedited Discovery and Other Relief and to transmit a true and correct copy of the following document: Case 1:19-cv-09439-PKC Document 117 Filed 01/27/20 Page 2 of 33 Exhibit 1: Expert Report of Maurice P.
    [Show full text]