Covid-19 Global Port Restrictions Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Integrated Analysis of the March 2015 Atacama Floods
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER An integrated analysis of the March 2015 10.1002/2016GL069751 Atacama floods Key Points: Andrew C. Wilcox1, Cristian Escauriaza2,3, Roberto Agredano2,3,EmmanuelMignot2,4, Vicente Zuazo2,3, • Unique atmospheric, hydrologic, and 2,3,5 2,3,6 2,3,7,8 2,3 9 geomorphic factors generated the Sebastián Otárola ,LinaCastro , Jorge Gironás , Rodrigo Cienfuegos , and Luca Mao fl largest ood ever recorded in the 1 2 Atacama Desert Department of Geosciences, University of Montana, Missoula, Montana, USA, Departamento de Ingeniería Hidráulica y 3 • The sediment-rich nature of the flood Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile, Centro de Investigación para la Gestión Integrada de resulted from valley-fill erosion rather Desastres Naturales (CIGIDEN), Santiago, Chile, 4University of Lyon, INSA Lyon, CNRS, LMFA UMR5509, Villeurbanne, France, than hillslope unraveling 5Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA, 6Escuela de • Anthropogenic factors increased the fi 7 consequences of the flood and Ingeniería Civil, Ponti cia Universidad Católica de Valparaíso, Valparaíso, Chile, Centro de Desarrollo Urbano Sustentable 8 highlight the need for early-warning (CEDEUS), Santiago, Chile, Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, systems Chile, 9Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile Supporting Information: Abstract In March 2015 unusual ocean and atmospheric conditions produced many years’ worth of • Supporting Information S1 rainfall in a ~48 h period over northern Chile’s Atacama Desert, one of Earth’s driest regions, resulting in Correspondence to: catastrophic flooding. -
Historia De La Región Magallánica”
32. Ley de Bosques, Decreto Ley 656 de 1931 y sus modificatorias. 42. Dirección General de Aguas, DGA. 2008. 33. Martinic B., Mateo. (1992). “Historia de la Región Magallánica”. Punta 43. Biblioteca del Congreso Nacional, Sistema Integrado de Información Arenas: Ediciones de la Universidad de Magallanes. Territorial. 2005. 34. MINVU. (2003). “Diagnóstico Actualización Plan Regional de Desarrollo 44. MIDEPLAN-PNUD. Las Trayectorias del Desarrollo Humano en las Urbano. Secretaría Regional Ministerial de Vivienda y Urbanismo, comunas de Chile 1994-2003, 2005 Región de Aysén.” 2003. 258 p. 45. MIDEPLAN. Encuesta CASEN. 2006, 2009. 35. Ministerio de Obras Públicas. (2007). “Infraestructura para la 46. SUBDERE (2007), incorporado en la Estrategia Regional de Desarrollo. Competitividad, Chile 2007/2012, Sector Forestal”, Versión Preliminar. 2009. 36. Musters, G. (1969). Vida entre los patagones. Buenos Aires: Hachette. 47. INE. Boletines del Índice de Actividad Económica Regional. 2008 - Página 282. 2011. 37. Rivera, A., Casassa, G., Acuña, C. & Lange, H. (2000) “Variaciones 48. www.vialidad.cl recientes de glaciares en Chile”. 49. www.aeropuertos.gob.cl 38. SERNATUR. (2007). “Plan Integral de Turismo - Región de Aysén 2008 – 2009”. 50. www.doh.gob.cl 39. SERNATUR. (2007). “Comportamiento de la Demanda Turística. Región 51. Consejo de Monumentos Nacionales. 2010. de Aysén. Año 2007 y Temporada 2007-2008”. 52. www.dirplan.cl 40. Universidad de Chile - Departamento de Ingeniería Industrial. (2006): “Informe de Caracterización: Agenda y Planes de Mejoramiento de la 53. Gestión y Monitoreo de Planes de Obras Públicas Etapa de Competitividad de la XI Región”. Implementación de la Ejecución del Plan. SDPE – DIRPLAN MOP. 2010. 41. -
PIF Chile Marine Coastal FAO.Pdf
MARINE CGEF-7 PROJECT IDENTIFICATION FORM (PIF) PROJECT TYPE: FULL-SIZED PROJECT PART I: TYPE OF TRUST FUND:GEF TRUST FUND PROJECT INFORMATION Project Title: Strengthening management and governance for the conservation and sustainable use of globally significant biodiversity in coastal marine ecosystems in Chile Country(ies): Chile GEF Project ID: 10075 GEF Agency(ies): FAO (select) (select) GEF Agency Project ID: 644609 Project Executing Entity(s): Ministry of Environment Submission Date: 2018-10-4 GEF Focal Area(s): Biodiversity Project Duration (Months) 48 A. INDICATIVE FOCAL/NON-FOCAL AREA ELEMENTS (in $) Programming Directions Trust Fund GEF Project Co- Financing financing BD-2-7 (select) GEFTF 2,049,356 4,500,000 BD 1-1 GEFTF 1,453,612 18,800,000 Total Project Cost 3,502,968 23,300,000 B. INDICATIVE PROJECT DESCRIPTION SUMMARY Project Objective: Develop and implement a governance system that integrates, coordinates and articulates public, private and civil society institutions for the conservation and sustainable use of coastal marine ecosystems. (in $) Project Component Project Project Trust GEF Co- Components Type Outcomes Outputs Fund Project financing Financing 1. Governance Technical Assistance 1.1 1.1.1 GEFTF 1,007,991 5,595,238 system for the Stakeholders Mechanisms conservation and apply new established to sustainable use of governance support public coastal marine system that sector decision ecosystems integrates, making based coordinates on an and articulates ecosystem public, private approach to and civil fisheries society -
CONAF, POR UN CHILE FORESTAL SUSTENTABLE Dirección De Edición: Aída Baldini
CONAF, POR UN CHILE FORESTAL SUSTENTABLE Dirección de edición: Aída Baldini Edición de contenidos: Eduardo Gándara Gabriela Omegna Textos: Eduardo Gándara Gabriela Omegna Alida Montero Karen Caimi Fotografía: Guy Wenborne Augusto Domínguez Renato Coda Banco de fotos CONAF Fototeca Forestal Mininco Fototeca Bosques Arauco Ilustraciones: Carlos González Fernando Vergara Alfonso Quiroz Coordinación de edición: Karen Caimi Diseño de portada e interiores: Yésika Rodríguez Producción: Empresa editora Zig Zag Primera edición, agosto 2013. Santiago de Chile Copyright: Corporación Nacional Forestal Inscripcion Nº 230805. ISBN 978-956-12-2601-2 Corporación Nacional Forestal Avenida Bulnes 285, Santiago de Chile. Derechos reservados. Prohibida la reproducción parcial o total de este libro Foto portada: Parque Nacional Vicente Pérez Rosales, Región de Los Lagos Queulat, Región de Aysén. P.N. 2 CONAF, POR UN CHILE FORESTAL SUSTENTABLE 3 Árbol selecto Eucalytus nitens, Región del Biobío. 4 PRESENTACIÓN a solidez del sector forestal chileno se basa en la mantención de Luna masa boscosa creciente con los años, tanto nativa como de plantaciones, como pocos países lo pueden exhibir. También se basa en una institucionalidad estable a partir del Ministerio de Agricultura, que ha trazado a lo largo de los años el camino hacia la sustentabili- dad. Por cierto, otro pilar fundamental es la existencia de una indus- tria de transformación primaria y secundaria de la madera, que se ha comprometido con el recurso forestal en su origen y con los habitan- tes de los -
Parte 2 La Región De Atacama
23 PARTE 2 LA REGIÓN DE ATACAMA I. ANTECEDENTES GENERALES Atacama tiene una superficie total de 75.573,3 km2 (7,5 millones de hectáreas) con una densidad de 3,38 habitantes por kilómetro cuadrado, una de las más bajas del país. La III Región1, está dividida administrativamente en tres provincias: Chañaral, Copiapó y Huasco y nueve comunas: Chañaral, Diego de Almagro, Colpiapó, Caldera, Tierra Amarilla, Vallenar, Huasco, Freirina y Alto del Carmen. El valle del río Copiapó comprende las comunas de Copiapó y Tierra Amarilla. Población e indicadores sociales De acuerdo a los datos arrojados por el Censo 2002, la población total de la región es de 254.336 habitantes (el 2% del total nacional). Esta aumentó en 10,2%, respecto al Censo de 1992, sin embargo es la cuarta región con menor crecimiento poblacional al ubicarse 3 puntos por debajo del crecimiento del país, de 13,2% (Cuadro 1)2. Del total de la población el 91,5% es urbana y 8,5% rural3; el 50,8% masculina y el 49,2% femenina. Según datos del INE para el año 2000, la tasa de nacimientos llegaba a 16,2 (por cada 1000 habitantes), mientras la de mortalidad infantil (por mil nacidos vivos) era de 14,4, la más alta del país, pero menor en dos puntos a la registrada en 19964. 1 SERPLAC III Región. “Prospección de Oportunidades de Inversión en la Región de Atacama"; Alvear, Fernando. “El entorno socioeconómico y laboral de la III región de Atacama”. Documento de trabajo Nº 3. Departamento de Estudios, Dirección del Trabajo. -
Submarine Tailings in Chile—A Review
metals Review Submarine Tailings in Chile—A Review Freddy Rodríguez 1, Carlos Moraga 2,*, Jonathan Castillo 3 , Edelmira Gálvez 4, Pedro Robles 5 and Norman Toro 1,* 1 Faculty of Engineering and Architecture, Universidad Arturo Prat, Almirante Juan José Latorre 2901, Antofagasta 1244260, Chile; [email protected] 2 Escuela de Ingeniería Civil de Minas, Facultad de Ingeniería, Universidad de Talca, Curicó 3340000, Chile 3 Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó 1531772, Chile; [email protected] 4 Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Antofagasta 1270709, Chile; [email protected] 5 Escuela De Ingeniería Química, Pontificia Universidad Católica De Valparaíso, Valparaíso 2340000, Chile; [email protected] * Correspondence: [email protected] (C.M.); [email protected] (N.T.); Tel.: +56-552651021 (N.T.) Abstract: This review aims to understand the environmental impact that tailings produce on the land and marine ecosystem. Issues related to flora, fauna, and the environment are revised. In the first instance, the origin of the treatment and disposal of marine mining waste in Chile and other countries is studied. The importance of tailings’ valuable elements is analyzed through mineralogy, chemical composition, and oceanographic interactions. Several tailings’ treatments seek to recover valuable minerals and mitigate environmental impacts through leaching, bioleaching, and flotation methods. The analysis was complemented with the particular legislative framework for every country, highlighting those with formal regulations for the disposal of tailings in a marine environment. The available registry on flora and fauna affected by the discharge of toxic metals is explored. As a study Citation: Rodríguez, F.; Moraga, C.; case, the “Playa Verde” project is detailed, which recovers copper from marine tailings, and uses Castillo, J.; Gálvez, E.; Robles, P.; Toro, phytoremediation to neutralize toxic metals. -
Región De Aysén
DATOS DE CONTACTO DATOS ESTABLECIMIENTO EDUCACIONAL COORDINADOR(A) PROCESO VALIDACIÓN DE ESTUDIOS - EXÁMENES LIBRES REGIÓN DEPROV RBD NOMBRE DIRECCIÓN COMUNA CONTACTO TELÉFONO CONTACTO CORREO ELECTRÓNICO OBSERVACIONES HUMBERTO GARCIA PUERTO AYSEN, HORARIO: LUNES A VIERNES 08: 30 - 12:30 HRS Y 11 COYHAIQUE 8375 LICEO POLITECNICO A-1 PUERTO AYSEN RICARDO SIERRA 672336619 [email protected] 225 AYSEN 15:00 - 17:30 HRS. ATENCIÓN 08:30-12:20 / 14:30 - 17:30; EN CASO DE PUERTO AYSEN, 11 COYHAIQUE 8377 ESCUELA AYSEN SARGENTO ALDEA 880 FRANZ VILLARROEL 981912779 [email protected] CONTINGENCIA EL CONTACTO ES SOLO EN AYSEN JORNADA DE MAÑANA. MAÑIHUALES, TRABAJO PRESENCIAL. LUNES A VIERNES 8:30 A LAS 11 COYHAIQUE 8380 LICEO MAÑIHUALES ARTURO PRAT Nº 235 NINFA VARGAS 965858902 [email protected] AYSEN 12:30 Y DE 13:30 A 17:30 LA VIA ES MARITIMA POR BARCAZA DESDE MANUEL RODRÍGUEZ CALETA ANDRADE, CHACABUCO O DESDE PUERTO CISNES O POR 11 COYHAIQUE 8382 ESCUELA CARLOS CONDELL S/N, CALETA MIRNA YAÑEZ PAILLAYAO 962080027 [email protected] AYSÉN CATAMARAN. HORARIO 8:30- 17:00 HRS ANDRADE PRESENCIALMENTE 8:30 A 13:00 DE 14:30 A 17:00 PRESENCIALMENTE, GABRIEL MISTRAL PUERTO CISNES, MARIA MIREYA MAÑADO [email protected]; LA COORDINADORA SE ENCUENTRA CON 11 COYHAIQUE 8388 ESCUELA GUIDO GOMEZ MUÑOZ 998206320 / 95876832 N°601. PUERTO CISNES CISNES OYARZUN; AQUILES MAYA [email protected] LICENCIA MEDICA Y EL JEFE DE UTP ESTARÁ A CARGO DEL PROCESO. LAS EVALUACIONES SE REALIZARÁN EN EL ESTABLECIMIENTO CON LOS PROTOCOLOS CAMILO HENRIQUEZ 11 COYHAIQUE 8391 ESCUELA EUSEBIO IBAR SCHEPELER LA JUNTA, CISNES MARCIA MEDINA TORRES 9 97720909 [email protected] SANITARIOS INDICADOS. -
NI 43-101 Technical Report
Independent Technical Report on the Carrizal Cu‐Co‐Au Property Carrizal Alto Mining District, III Region de Atacama, Chile Centred: 308750 mE and 6895000 mN (PSAD56 /UTM Zone 19 Southern Hemisphere) Prepared for: Red Metal Resources Ltd. Suite 102, 278 Bay Street Thunder Bay, Ontario, Canada P7B 1R8 Prepared by: Caracle Creek International Consulting Inc. Scott Jobin‐Bevans, Ph.D., PMP, P.Geo. Principal Geoscientist 2018‐1545 Maley Drive Sudbury, Ontario, Canada P3A 4R7 Effective Date: June 30, 2019 Report Date: November 28, 2020 1 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report DATE AND SIGNATURE PAGE The Report, “Independent Technical Report on the Carrizal Cu‐Co‐Au Property, Chile”, with an Effective Date of June 30, 2019, was authored by the following: “signed and sealed original on file” _______________________________________ Scott Jobin‐Bevans, P.Geo., Ph.D., PMP Caracle Creek International Consulting Inc. Dated: November 28, 2020 November 28, 2020 2 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report Table of Contents Table of Contents ........................................................................................................................................... 2 List of Figures ................................................................................................................................................. 4 List of Tables ................................................................................................................................................. -
Groundwater Origin and Recharge in the Hyperarid Cordillera De La Costa, Atacama Desert, Northern Chile
Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Christian Herrera1,2, Carolina Gamboa1,2, Emilio Custodio3, Teresa Jordan4, Linda Godfrey5, Jorge Jódar6, José A. Luque1,2, Jimmy Vargas7, Alberto Sáez8 1 Departmento de Ciencias Geológicas , Universidad Católica del Norte, Antofagasta, Chile 2 CEITSAZA‐Research and Technological Center of Water in the Desert, Northern Catholic University, Antofagasta, Chile 3 Groundwater Hydrology Group, Dept. Civil and Environmental Eng., Technical University of Catalonia (UPC). Royal Academy of Sciences of Spain 4 Department of Earth & Atmospheric Sciences and Atkinson Center for a Sustainable Future, Snee Hall, Cornell University, Ithaca, NY 14853‐1504, USA 5 Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA. 6 Groundwater Hydrology Group, Dept. Civil and Environmental Eng., Technical University of Catalonia (UPC), Hydromodel Host S.L. and Aquageo Proyectos S.L., Spain 7 Mining Company Los Pelambres, Av. Apoquindo 4001 Piso 18, Las Condes, Santiago, Chile 8 Department of Earth and Ocean Dynamics, University of Barcelona, C. Martí i Franqués s/n, 08028 Barcelona, Spain GRAPHICAL ABSTRACT 1 Highlights ‐Small springs have been recognized in the hyper‐arid coastal zone of the Atacama Desert ‐The δ18O and δ2H values of spring waters are similar to coastal region rainfall ‐The average residence time of the waters from springs varies between 1 and 2 hyr, up to 5 hyr ‐Waters from the deep wells are isotopically much heavier than those of springs ‐Turnover time for deep waters varies between 7 and 13 hyr, which overlaps the CAPE events ABSTRACT The Cordillera de la Costa is located along the coastline of northern Chile, in the hyperarid Atacama Desert area. -
Downloaded 10/10/21 07:22 PM UTC Projects, but Has Also Built up a Public Meteorologi- Cal Database Over Previ- Ously Data-Void Regions
WIND ENERGY EXPLORATION OVER THE ATACAMA DESERT A Numerical Model–Guided Observational Program RICARDO C. MUÑOZ, MARK J. FALVEY, MARIO ARANCIBIA, VALENTINA I. ASTUDILLO, JAVIER ELGUETA, MARCELO IBARRA, CHRISTIAN SANTANA, AND CAMILA VÁSQUEZ A Chilean program explores winds over the Atacama Desert region and is producing a public model and observational database in support of the development of wind energy projects. enewable energy, especially wind and solar, is an and execute measurement programs, and for the increasingly important field in applied meteorol- modeling of resource variability. Renewable energy Rogy and climate science. From the initial studies poses special challenges compared to more traditional that explore the availability of these energy resources meteorological applications (Emeis 2013). In the case in a given area, to the forecasting models required of wind power, for example, most phenomena of inter- to optimize the operation of wind or solar power est occur within the atmospheric boundary layer over plants, meteorological expertise is needed to design horizontal scales ranging from the microscale to the mesoscale. Moreover, the viability of many renew- able energy projects depends on the accuracy of the AFFILIATIONS: MUÑOZ AND ASTUDILLO—Department of Geophys- ics, University of Chile, Santiago, Chile; FALVEY AND IBARRA—De- meteorological variables measured and modeled, with partment of Geophysics, University of Chile, and Meteodata Ltd., even small errors having large financial implications. Santiago, Chile; ARANCIBIA AND ELGUETA—Department of Geophysics, On the other hand, the emergence of the renewable University of Chile, and Airtec Ltd., Santiago, Chile; SANTANA AND energy industry has led to a significant increase in the VÁSQUEZ—Ministerio de Energía, Santiago, Chile number of measuring sites being deployed worldwide, CORRESPONDING AUTHOR: Ricardo C. -
Huemul Portfolio – Chile
Environmental and Social Review Summary (ESRS) Huemul Portfolio – Chile Original language of the document: English Revision’s cut-off date: March 2020 1. General Information and Overview of Scope of IDB Invest’s Review Mainstream Renewable Power (“The Sponsor” or “MRP”), through Huemul Energía Spa (“The Client”, “The Special Purpose Vehicle” or the “SPV”), is planning to develop the Huemul Renewable Energy Portfolio (“The Project”). The latter comprehends two Photovoltaic Power Plants (Pampa Tigre, located at Antofagasta region, and Valle Escondido, located at Atacama region), and three Wind Farm Plants (Ckani and Llanos del Viento, both located at Antofagasta region, and Puelche Sur located at Los Lagos region), hereafter “The Subprojects”. Each Subproject was subject to an environment evaluation1 under Chilean legislation, which concludes with a Resolution of Environment Qualification (the “RCA”), which is, in fact, an environmental license. Any modification or new work that might be needed after the RCA has been granted, can be evaluated through a Pertinence Consulting (“CP”), if such works do not impose new impacts; or through an environment assessment declaration (“DIA”) or an environmental impact assessment (“EIA”), depending in the magnitude and intensity of such impacts. Pampa Tigre Photovoltaic Power Plant (“Pampa Tigre”), evaluated through a DIA, includes: i) the installation of 430,920 photovoltaic modules with a gross installed capacity of 100 megawatt alternating current (“MWac”); ii) a booster substation; iii) a switch substation; iv) and a 9.6 km long, 220 kilo-volt (“kV”) transmission line (“TL”). Valle Escondido Photovoltaic Power Plant (“Valle Escondido”), evaluated through a DIA, includes: i) the installation of 382,000 photovoltaic modules that total a gross installed capacity of 105 MWac; and ii) a booster substation which will transfer the energy produced by the Project to the Sistema Eléctrico Nacional (“SEN”). -
The Atacama Fault System in the Huasco Province, Southern Atacama Desert, Chile
U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 THE ATACAMA FAULT SYSTEM IN THE HUASCO PROVINCE, SOUTHERN ATACAMA DESERT, CHILE ARÉVALO, C.1, GROCOTT, J. 2 and WELKNER, D. 1 1Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia. 2 Centre for Earth and Environmental Science Research, School of Earth Sciences and Geography, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK [email protected]; [email protected]; [email protected] INTRODUCTION The Atacama Fault System (AFS) is a continental scale, trench-parallel strike-slip fault system that transects mainly Mesozoic plutonic and volcanic magmatic arc rocks along the axis of the Coastal Cordillera of Northern Chile (Brown et al., 1993). From north to south, the AFS has been subdivided into three major segments of brittle and ductile faults: the Salar del Carmen, the Paposo and the El Salado segments (Naranjo, 1987). In the last 10 years systematic studies of the northern-most segments have produced considerable progress on the understanding of the chronology and flow regime of the displacements associated with the activity of the AFS (Brown et al., 1993; Dallmeyer et al., 1996, Wilson and Grocott, 1999; Bonson, 1998). In particular, in the El Salado segment it has been shown that the AFS was initiated about 130 Ma ago as a left- transtensional strike-slip system and was active as a synplutonic fault to at least 106 Ma (Dallmeyer et al., 1996).