Biological Studies of the Dermaptera, Or Earwigs, of Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Biological Studies of the Dermaptera, Or Earwigs, of Arizona Biological studies of the Dermaptera, or earwigs, of Arizona Item Type text; Thesis-Reproduction (electronic) Authors Jackson, Charles Glenwood, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 12:13:55 Link to Item http://hdl.handle.net/10150/551753 BIOLOGICAL STUDIES OF THE DERMAPTERA, OR EARWIGS, OF ARIZONA by Charles G. Jackson A Thesis Submitted to the Faculty of the DEPARTMENT OF ENTOMOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 6 4 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re ­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to bor­ rowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of schol­ arship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: ACKNOWLEDGMENTS The author wishes to express his sincere gratitude to Dr. W. L. Nutting whose guidance, patience, and encouragement made this thesis possible. Special appreciation is also extended to Dr. L. A. Car ruth, Head of the Department, for his wisdom and counsel and for financial aid made available in the form, of a graduate assistantship in the Department of Entomology. Dr. F. G. W erner's assistance in the identification of certain specimens is also gratefully acknowledged. Dr. G. D. Butler, Jr. is remembered for critically examining this manuscript. i ii TABLE OF CONTENTS P a g e LIST OF ILLUSTRATIONS .................... ............................................ .... v i L IS T O F T A B L E S ....................................................................................................... v iii ABSTRACT ............................. ix IN T R O D U C T IO N ................................................................. .... ........................ ..... 1 MATERIALS AND METHODS ......................... ............................................ .... 3 K EY TO T H E S P E C I E S .......................................................................................... 5 SYSTEMATIC TREATMENT OF THE EARWIGS KNOWN TO OCCU R IN A R IZ O N A .......................................................................................... 8 Peru lineare . Description oo oo Distribution ............................................................................................... 8 F o r fic u la a u r i c u l a r i a ...................................................... 10 D e s c rip tio n .................................................................................................... 10 D i s t r i b u t i o n ............................................................................................... 11 Labi dura riparia ................................................................ 12 D e s c rip tio n .................................................................................................... 12 D i s t r i b u t i o n ............................................................................................... 13 H a b i t a t ......................................................................................................... 14 F o o d H a b i t s ............................................................................................... 15 L ife H i s t o r y ............................................................................................... 17 General Behavior ..................................................................................... 17 E u b o re llia a n n u lip e s ......................................................................................... 19 D e s c rip tio n .................................................................................................... 19 D i s t r i b u t i o n ........................................................... 20 H a b i t a t ................................................................................................................ 20 F o o d H a b i t s ......................................................................................................21 L ife H i s t o r y ......................................................................................................22 G e n e ra l B e h a v io r ............................................................................................22 iv V TABLE OF CONTENTS--Continued P a g e E u b o r e llia c i n c t i c o l l i s ................................................................................... 24 D e s c r i p t i o n ............................................................................................... 24 D i s t r i b u t i o n ............................................................................................... 25 H a b ita t. ........................................................................... ............................ 27 Food Habits ................................................................................................ 27 L ife H i s t o r y .................................................................. 27 G e n e ra l B e h a v i o r ................................................................................... 28 S p o n g o v o sto x a p i c e d e n t a t u s ....................................................................... 29 Description ................................................................................................ 29 Distribution .............................. .................................................................. 29 H a b i t a t ........................................................................................................... 31 F o o d H a b i t s ................................................................................................. 31 L ife H is to r y ...................................... 32 G e n e ra l B e h a v io r . ........................................................................... 32 Vostox brunneipennis ........................................................... ........................ 33 D e s c r i p t i o n ........................................................................................ .... « 33 D i s t r i b u t i o n ................................................................................................ 33 V o sto x e x c a v a t u s . .................................................................................... 34 D e s c r i p t i o n ................................................................................................ 34 Distribution ................................................................................................ 35 H a b i t a t ......................................................................................................... 36 F o o d H a b i t s ................................................................................................. 37 L ife H is to r y ................................................................... 38 Separation of Nymphal Instars on the Basis of Head W id th ........................................................................................................ 39 General Behavior ......................... ................................ .... 40 DISCUSSION AND CONCLUSIONS ................................................................ • 43 SUMMARY .............................................................. ..................................................... 46 L IT E R A T U R E C IT E D ................................................................................................ 48 LIST OF ILLUSTRATIONS Figure Page 1 Dorsal view of a rearing cage showing the upper rear­ ing chamber over the water chamber . ...................................... 51 2 Dorsal view of the male of Labidura rip aria .......................... 52 3 Dorsal view of the 10th abdominal segment and forceps of the female of Labidura rip aria .......................................... 52 4 Dorsal view of the male of Euborellia annulipes .................. 53 5 Dorsal view of the 10th abdominal segment and forceps of the female of Euborellia annulipes ......................... .... 53 6 Dorsal view of the male of Euborellia cincticollis .... 54 7 Dorsal view of the 10th abdominal segment and forceps of th e fe m a le of E u b o r e llia c i n c t i c o l l i s ...................................... 54 8 Dorsal view of the male of Spongovostox apicedentatus. 55 9 Dorsal view of the 10th abdominal segment and forceps of the fem ale of Spongovostox apic edentatus ......................... 55 10 Dorsal view of the male of Vostox excavatus ......................... 56 11 Dorsal view of the 10th abdominal segment and forceps of the female of
Recommended publications
  • Taxonomy of Iberian Anisolabididae (Dermaptera)
    Acta Zoologica Academiae Scientiarum Hungaricae 63(1), pp. 29–43, 2017 DOI: 10.17109/AZH.63.1.29.2017 TAXONOMY OF IBERIAN ANISOLABIDIDAE (DERMAPTERA) Mario García-París Museo Nacional de Ciencias Naturales, MNCN-CSIC c/José Gutiérrez Abascal, 2, 28006, Madrid. Spain. E-mail: [email protected] An update on the taxonomy and geographic distribution of Iberian Anisolabididae (Der- maptera) is provided. Former catalogues reported in the Iberian Peninsula three genera of Anisolabididae: Aborolabis, Anisolabis, and Euborellia. A revision of 487 specimens of Iberian and North African Anisolabidoidea permit to exclude the genus Aborolabis from the Iberian fauna, the re-assignation of inland Euborellia annulipes Iberian records to Euborellia moesta, and the exclusion of Aborolabis angulifera from Northwestern Africa. Examination of type materials of Aborolabis mordax and Aborolabis cerrobarjai allows to propose the treatment of A. cerrobarjai as a junior synonym of A. mordax. The diagnostic characters of Euborellia his- panica are included within the local variability found in E. moesta. I propose that E. hispanica should be treated as a junior synonym of E. moesta. Key words: earwigs, systematics, Mediterranean region, Spain, Morocco, NW Africa. INTRODUCTION The Iberian fauna of Dermaptera, including Anisolabididae Verhoeff, 1902, has been the subject of diverse revisionary (Bolívar 1876, 1897, Lapeira & Pascual 1980, Herrera Mesa 1980, Bivar de Sousa 1997) and compilatory works (Herrera Mesa 1999). These revisions together with the monograph of the Fauna of France (Albouy & Caussanel 1990) and the on-line information included in Fauna Europaea (Haas 2010), rendered the image of Dermaptera as a well known group in continental western Europe.
    [Show full text]
  • STUDIES on the DERMAPTERA of the PHILIPPINES1 by G
    Pacific Insects 17(1): 99-138 1 October 1976 STUDIES ON THE DERMAPTERA OF THE PHILIPPINES1 By G. K. Srivastava2 Abstract: This paper includes the description of 18 new species belonging to the genera Diplatys, Epilandex, Chaetospania, Auchenomus, Apachyus, Allostethus, Proreus, Adiathella, Kosmetor and Timomenus. Besides these, 2 species are reported for the first time from the Philippine Islands. Our knowledge of the fauna of the Philippine Islands is largely based on the works of Caudell (1904), BoreUi (1915a, b, 1916, 1917, 1918,1921,1923,1926), Brindle (1966,1967) and Ramamurthi (1967). Recently, Srivastava (in press) has studied a collection of earwigs belonging to the Field Museum of Natural History, Chicago, which has resulted in the description of 14 new species. The present paper contains an account of some Dermaptera recently received for study from the Bishop Museum, Honolulu, Hawaii. The collection comprises 55 species (excluding 22 represented by either females or nymphs, identified up to generic level only) belonging to 28 genera, of which 18 species are new to science and 2 others are reported for the first time from the Philippines. The genus Apachyus Serville, hitherto unknown from the Philippine Islands, is represented by a new species. For some species that are represented by a large series in the collection it has been possible to study in detail the range of variations. A few females and nymphs could not be identified because the taxonomy of the whole order is based mainly on males, which often makes identification difficult. The fauna of the Philippine Islands appears to be not only rich in the number of species but also in the multiplicity of individuals for some species.
    [Show full text]
  • Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
    When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae.
    [Show full text]
  • A Synergism Between Dimethyl Trisulfide and Methyl Thiolacetate
    University of Connecticut OpenCommons@UConn Department of Ecology and Evolutionary EEB Articles Biology 2020 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented Minimal Trap Stephen T. Trumbo University of Connecticut at Waterbury, [email protected] John Dicapua III University of Connecticut at Waterbury, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Behavior and Ethology Commons, and the Entomology Commons Recommended Citation Trumbo, Stephen T. and Dicapua, John III, "A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically- Supplemented Minimal Trap" (2020). EEB Articles. 46. https://opencommons.uconn.edu/eeb_articles/46 1 1 2 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting 3 Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented 4 Minimal Trap 5 6 Stephen T. Trumbo* and John A. Dicapua III 7 8 University of Connecticut, Department of Ecology and Evolutionary Biology, 9 Waterbury, Connecticut, USA 10 11 *Department of Ecology and Evolutionary Biology, University of Connecticut, 99 E. 12 Main St., Waterbury, CT 06710, U.S.A. ([email protected]) 13 ORCID - 0000-0002-4455-4211 14 15 Acknowledgements 16 We thank Alfred Newton (staphylinids), Armin MocZek and Anna Macagno (scarabs) 17 for their assistance with insect identification. Sandra Steiger kindly reviewed the 18 manuscript. The Southern Connecticut Regional Water Authority and the Flanders 19 Preserve granted permission for field experiments. The research was supported by 20 the University of Connecticut Research Foundation.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Earwigs from Brazilian Caves, with Notes on the Taxonomic and Nomenclatural Problems of the Dermaptera (Insecta)
    A peer-reviewed open-access journal ZooKeys 713: 25–52 (2017) Cave-dwelling earwigs of Brazil 25 doi: 10.3897/zookeys.713.15118 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta) Yoshitaka Kamimura1, Rodrigo L. Ferreira2 1 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan 2 Center of Studies in Subterranean Biology, Biology Department, Federal University of Lavras, CEP 37200-000 Lavras (MG), Brazil Corresponding author: Yoshitaka Kamimura ([email protected]) Academic editor: Y. Mutafchiev | Received 17 July 2017 | Accepted 19 September 2017 | Published 2 November 2017 http://zoobank.org/1552B2A9-DC99-4845-92CF-E68920C8427E Citation: Kamimura Y, Ferreira RL (2017) Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta). ZooKeys 713: 25–52. https://doi.org/10.3897/zookeys.713.15118 Abstract Based on samples collected during surveys of Brazilian cave fauna, seven earwig species are reported: Cy- lindrogaster cavernicola Kamimura, sp. n., Cylindrogaster sp. 1, Cylindrogaster sp. 2, Euborellia janeirensis, Euborellia brasiliensis, Paralabellula dorsalis, and Doru luteipes, as well as four species identified to the (sub) family level. To date, C. cavernicola Kamimura, sp. n. has been recorded only from cave habitats (but near entrances), whereas the other four organisms identified at the species level have also been recorded from non-cave habitats. Wings and female genital structures of Cylindrogaster spp. (Cylindrogastrinae) are examined for the first time. The genital traits, including the gonapophyses of the 8th abdominal segment shorter than those of the 9th segement, and venation of the hind wings of Cylindrogastrinae correspond to those of the members of Diplatyidae and not to Pygidicranidae.
    [Show full text]
  • European Earwig, Forficula Auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-032 European Earwig, Forficula auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1 H. V. Weems, Jr., and P. E. Skelley2 Introduction Distribution The European earwig, Forficula auricularia This earwig is found throughout Europe, but it Linnaeus 1758, is intercepted in Florida frequently in seldom is present in great numbers. Quantities of bundles of plants and shrubbery, in cut flowers, and nursery stock arrive from the western United States in florists' equipment arriving from the western annually that are infested with this earwig, but it has United States. This insect is spread largely by man. not successfully established in Florida. While it has Spread by natural means is limited because earwigs not been considered of great economic importance in seldom fly and cannot maintain flight very long. It Europe, it has become a serious pest in parts of the has not yet become established in Florida, but it has United States. the potential to do so, at least in the northern part of the state. This earwig was recorded first in the United The European earwig is widespread in cooler States at Newport, Rhode Island in 1911 (Jones parts of the world. Originally known from the 1917). Jones (1917) reported a small colony from Palearctic Region, the European earwig has been Seattle, Washington in 1915. Later evidence indicated recorded from Canada (British Columbia, Manitoba, that it first invaded North America somewhere on the Newfoundland, Nova Scotia, Ontario, Quebec, and west coast in the early 1900s. Eventually it became Saskatchewan) and the United States (Arizona, widespread in the New England and Middle Atlantic California, Colorado, Idaho, Maine, Massachusetts, states and throughout most of the western states, Montana, New York, North Carolina, Oregon, Rhode especially where there is abundant rainfall or Island, Utah, and Washington).
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Summer 2012 Bulletin of the Oregon Entomological Society
    Summer 2012 Bulletin of the Oregon Entomological Society Dragonfly Pond Watch—coming to a wetland near you! Celeste Mazzacano1 Dragonfly Migration Although dragonfly migration has been documented for over 100 years, there is still much to be learned, as we lack defini- Dragonfly migration is one of the most fascinating events in the tive answers to questions surrounding the environmental cues insect world, but also one of the least-known. This is even more that trigger migration, the adaptive advantages gained by the surprising when you consider that dragonfly migration occurs on subset of odonate species that migrate, reproductive activity of every continent except Antarctica. When people think of insect migration, the Monarch butterfly (Danaus plexippus) is a familiar figure, but the Wandering Glider (Pantala flavescens), a widely distributed species also known as a regular mi- grant in North America, can travel 11,000 miles (17,700 km) across the Indian Ocean from Africa to India and back—more than twice the distance of the Monarch’s well-known annual journey. Only about 16 of our 326 dragonfly species in North America are regular migrants, with some making annual seasonal flights while others are more sporadic. The major migratory species in North America are Common Green Darner (Anax junius), Wandering Glider (Pantala flave- scens), Spot-winged Glider (P. hymenaea), Black Saddlebags (Tramea lacerata), and Variegated Meadowhawk (Sympetrum corruptum). Different species tend to dominate migration flights in different parts of the continent. Anax junius is our best-known migrant, moving in Common Green Darner (Anax junius) at North Bend, Coos County, Oregon.
    [Show full text]
  • Tesis Maestría V. Mourglia 2013
    Distribución espacio-temporal de la abundancia y riqueza de insectos en una playa arenosa de Uruguay Tesis de Maestría en Biología Opción Zoología Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) Lic. Virginia Mourglia Pons Director: Dra. Patricia González. Sección Entomología Co-director: Dr. Omar Defeo. UNDECIMAR Facultad de Ciencias, UdelaR Montevideo, 2013 AGRADECIMIENTOS Al culminar esta etapa uno se da cuenta de que fueron muchas las personas que de alguna manera estuvieron junto a mí, brindándome apoyo y energía para recorrer este camino, y quisiera expresarles mi más sincero y profundo agradecimiento. A Omar Defeo y Patricia González-Vainer por su orientación, sus conocimientos compartidos, el constante apoyo recibido y por su calidez humana. Gracias Omar por la permanente motivación y estímulo que transmitís al compartir tu gran pasión. Patricia te agradezco por el gran tiempo dedicado a esta tesis, especialmente ayudándome en la ardua tarea de la identificación de especies, y por haberme acompañado en cada etapa. A los miembros del tribunal, Dr. Diego Lercari, Dr. Enrique Morelli y Dr. Miguel Simó por sus aportes y correcciones que enriquecieron esta tesis. Al Dr. Martín Bollazzi quien desinteresadamente colaboró en la identificación de las especies de Formicidae. Al PEDECIBA y a los proyectos financiados por Pew Charitable Trusts y por Global Environmental Facility (GCP URU 030 GFF) por aportar fondos para realizar este trabajo. A la CSIC por la financiación de la Beca de Apoyo a la finalización de estudios de posgrado de la UdelaR. A todos los que colaboraron en las salidas de campo: Andrés de la Rosa, Diego Caballero, Diego Lercari, Eleonora Celentano, Julio Gómez, Gastón Martínez, Leonardo Ortega, Luis Orlando, Omar Defeo, Sebastián Horta, Sebastián Sauco, Rafael Barboza.
    [Show full text]