GALOIS GROUPS of ENUMERATIVE PROBLEMS Oxioxj

Total Page:16

File Type:pdf, Size:1020Kb

GALOIS GROUPS of ENUMERATIVE PROBLEMS Oxioxj Vol. 46, No. 4 DUKE MATHEMATICAL JOURNAL (C) December 1979 GALOIS GROUPS OF ENUMERATIVE PROBLEMS JOE HARRIS Contents. Oo Introduction 685 I. Galois and monodromy groups 688 II. Flexes and bitangents of plane curves 690 1. Pliicker formulas 690 2. Flexes of a plane cubic 693 3. Flexes of a plane curve of degree d > 4 697 4. Bitangents to a smooth plane quartic 700 5. Bitangents of a plane curve, degree d > 5 706 III. Lines on hypersurfaces 707 1. The Fano scheme 707 2. Lines on a hypersurface in P", n > 4 712 3. Lines on a cubic surface 715 4. Bitangents of a plane quartic II 719 IV. The problem of five conics 721 References 724 0. Introduction. This paper is concerned with the solvability of certain enumerative problems in algebraic geometry. To illustrate the questions raised, consider one of the problems dealt with belowmthat of locating the flexes of a plane curve. We let C c P be a complex plane curve of degree d, given as the locus of the homogeneous polynomial F(Xo,X,Xa)= ZagjX-i-Jx[xJ2 (or in j. euclidean coordinates x Xi/Xo, as the locus of f(x,x2) ,aijxlxa), we will take coefficients ai. to be general complex numbers. At a generic point of C, then, the tangent lne Tp(C) intersects C with multiplicity mp(C. I)= 2; we say that p is a flex point of C if mp(l. C)> 3. An elementary count of parameters leads us to expect that C will have a finite number of flex points p; and accordingly we may ask two questions: first, how many flexes does C possess? and second, can we find them?--that is, is it possible to give a formula for coordinates xi(p) of the flex points p of C in terms of the coefficients There are a number of ways of answering the first of these questions; historically the first was to note that the flexes of C comprise the locus F(X) H(X)= O, where H(X) is the Hessian det H(X) OXiOXj Received February 13, 1979. Research partially supported by NSF Grant MCS 77-01964. 685 686 JOE HARRIS since H(X) has degree 3(d-2), we expect 3d(d-2) flexes. To set up the second problem, we note that since the coordinates x(p,) are roots of the ith resultant Ri(f, h), (xi)a polynomial of degree 3d(d- 2) in x whose coefficients are elements of the field G(aj) of rational functions in the ao.the field C,(ai,x(p,O) obtained from G(a0.) by adjoining the xi(p,0 is a finite algebraic extension of C(aj); and there will exist a formula for xi(p,,) in terms of the a/j exactly when the Galois group G of this extension is solvable. We may thus replace our second question with the broader, What is the Galois group G of the extension C,(ai,xi(pa))/C,(aij) 9. We note that determining G will also answer some other questions in the same vein. For example, knowing G and the action of G on the roots of Ri, we may ascertain whether the subgroup G’ GalG(ao.,xi(p))/G(aij,xi(Pl),..., xi(pk)) of G fixing k roots is solvable-- that is whether, given the coordinates of k flexes of C, we may solve explicitly for the remaining 3d(d- 2)- k. In similar fashion, there is associated to most enumerative problems a Galois group, whose structure reflects the difficulty of obtaining explicit solutions to the problem. Historically, these Galois groups were first studied systematically by Camille Jordan in his book Traitb des Substitutions (1870) where he discusses, among others, the Galois groups of the flexes of a plane cubic, the bitangents to a plane quartic curve, and the lines on a cubic surface in [a3. Jordan’s work, however--as well as later refinements by Dickson [4] and Weber [13]--was in a direction opposite to that suggested above: the equations defining the coordinates of the flexes of a plane cubic, bitangents to a plane quartic and lines in a cubic surface had already been extensively studied by Cayley, Clebsch, Hesse, Steiner and others ([2], [3], [12]) some time before the advent of Galois theory. What Jordan did was to show how this earlier work would be expressed and interpreted in terms of Galois theory. Thus, for example, in considering the flexes of a plane cubic, Jordan takes Hesse’s solution of the problem and analyzes it to determine the group. In the present paper we take the opposite tack, and determine the solvability of four enumerative problems--the first three of which are generalizations of the ones mentioned above--by computing their Galois groups. There are, in general, two steps in solving each of these problems: First, we look to see what, if any, intrinsic structure is carried by the set of solutions to the problem (e.g., among the nine flexes of a plane cubic, there are 12 sets of three collinear points). This structure must be preserved under the action of the Galois group G (e.g., if Pl, P2, P3 are three collinear flexes of a plane cubic F(X)= 0, the coordinates of P3 may be rationally expressed in terms of those of P and P2 by restricting F to the line PiP2 and factoring out the roots corresponding to _Pl and P2; and so must be preserved under any automorphism 0 G fixing xi(Pl) and xg(p2)). This then gives us an "upper bound" on the group. The second half of the problem--showing that G must be at least as large as some subgroup H of the symmetric group on the set of solutionsseems harder. Certainly it is not practical to analyze the equation in generalfor d large one GALOIS GROUPS OF ENUMERATIVE PROBLEMS 687 could hardly hope, for example, to determine whether the group G of the flexes of a plane d- ic was contained in the alternating group by writing down the discriminant of the degree 3d(d- 2) polynomial R and determining whether it was a square in G(aj). Our technique, rather, is to equate the group G with the monodromy group M of a generically finite map of algebraic varieties, as described in chapter of this paper. This allows us to exhibit elements of the Galois/monodromy group simply by drawing arcs in the parameter space for the problem. One situation in which this approach is particularly effective is in showing that G is the full symmetric group. Here, after showing that G is twice transitive, we want to exhibit a simple transposition in G; and by the lemma of section 11.3 below, this amounts--modulo some secondary argumentsmto locating a special case of the problem which admits a "solution of multiplicity tWO." The four problems considered here are the flexes and bitangents of a general plane curve of any degree d; the lines on a general hypersurface 1/" c an of degree 2n 3, for any n; and the conics tangent to each of five given conics in the plane. For each of the first three, we consider separately the case studied by Jordan, giving a new proofmusing monodromy argumentsmof his theorem, and say what this means in terms of solutions to the problem. We then consider the general case. The arguments in all four cases follow pretty much the same lines; as indicated above, the essential ingredient is the determination of the multiplicity of a solution. For the flexes and bitangents of plane curves, this is implicit in the general form of the classical Pliicker formulas; in the case of lines in hypersurfaces it is a straightforward computation made in section III.1; and for the conics tangent to five conics the answer was recently supplied by Fulton and MacPherson in [5]. The findings may be stated readily: the Galois groups are (i) For the flexes of a plane d- ic, the affine special linear group ASL2(Z/3) in case d 3; and the full symmetric group in case d > 4; (ii) For the bitangents to a plane d- ic, the orthogonal group O6(Z/2) in case d 4 and the full symmetric group in case d > 5; (iii) For the lines on a hypersurface l/’2n_31a: the odd orthogonal group 06- (Z/2) in case n 3, and the full symmetric group in case n > 4; and (iv) For the conics tangent to five conics, the full symmetric group. One remark, finally, about the significance of the results, and in particular the fact that, in every case not considered classically, the group is shown to be the full symmetric group. On one hand, it is of course a disappointment that no explicit solutions may be given for the problems mentioned. On the other hand, however, the results represent an affirmation of one understanding of the geometry underlying each of these problems, in the following sense: in every case dealt with here, the actual structure on the set of solutions of the enumerative problem as determined by the Galois group of the problems, is readily described in terms of standard algebrao-geometric constructions. In particular, in every case in which current theory had failed to discern any 688 JO HARRIS intrinsic structure on the set of solutionsit is proved herethere is in fact none. I would like to thank Steven Kleiman, who introduced this problem to me, and whose ideas have guided this work throughout.
Recommended publications
  • Cubic Surfaces and Their Invariants: Some Memories of Raymond Stora
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 912 (2016) 374–425 www.elsevier.com/locate/nuclphysb Cubic surfaces and their invariants: Some memories of Raymond Stora Michel Bauer Service de Physique Theorique, Bat. 774, Gif-sur-Yvette Cedex, France Received 27 May 2016; accepted 28 May 2016 Available online 7 June 2016 Editor: Hubert Saleur Abstract Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I’m very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. Ireview briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. Ishow how to retrieve this description via counting/generating functions and character formulae. © 2016 The Author. Published by Elsevier B.V.
    [Show full text]
  • Classifying Smooth Cubic Surfaces up to Projective Linear Transformation
    Classifying Smooth Cubic Surfaces up to Projective Linear Transformation Noah Giansiracusa June 2006 Introduction We would like to study the space of smooth cubic surfaces in P3 when each surface is considered only up to projective linear transformation. Brundu and Logar ([1], [2]) de¯ne an action of the automorphism group of the 27 lines of a smooth cubic on a certain space of cubic surfaces parametrized by P4 in such a way that the orbits of this action correspond bijectively to the orbits of the projective linear group PGL4 acting on the space of all smooth cubic surfaces in the natural way. They prove several other results in their papers, but in this paper (the author's senior thesis at the University of Washington) we focus exclusively on presenting a reasonably self-contained and coherent exposition of this particular result. In doing so, we chose to slightly modify the action and ensuing proof, more aesthetically than substantially, in order to better reveal the intricate relation between combinatorics and geometry that underlies this problem. We would like to thank Professors Chuck Doran and Jim Morrow for much guidance and support. The Space of Cubic Surfaces Before proceeding, we need to de¯ne terms such as \the space of smooth cubic surfaces". Let W be a 4-dimensional vector-space over an algebraically closed ¯eld k of characteristic zero whose projectivization P(W ) = P3 is the ambient space in which the cubic surfaces we consider live. Choose a basis (x; y; z; w) for the dual vector-space W ¤. Then an arbitrary cubic surface is given by the zero locus V (F ) of an element F 2 S3W ¤ ½ k[x; y; z; w], where SnV denotes the nth symmetric power of a vector space V | which in this case simply means the set of degree three homogeneous polynomials.
    [Show full text]
  • Arxiv:1712.01167V2 [Math.AG] 12 Oct 2018 12
    AUTOMORPHISMS OF CUBIC SURFACES IN POSITIVE CHARACTERISTIC IGOR DOLGACHEV AND ALEXANDER DUNCAN Abstract. We classify all possible automorphism groups of smooth cu- bic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quar- tic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automor- phism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive char- acteristic, together with a group action, can be lifted to characteristic zero. Contents 1. Introduction2 Acknowledgements8 2. Preliminaries8 3. Del Pezzo surfaces of degree 4 12 4. Differential structure in special characteristics 19 5. The Fermat cubic surface 24 6. General forms 28 7. Rationality of the moduli space 33 8. Conjugacy classes of automorphisms 36 9. Involutions 38 10. Automorphisms of order 3 46 11. Automorphisms of order 4 59 arXiv:1712.01167v2 [math.AG] 12 Oct 2018 12. Automorphisms of higher order 64 13. Collections of Eckardt points 69 14. Proof of the Main Theorem 72 15. Lifting to characteristic zero 73 Appendix 78 References 82 The second author was partially supported by National Security Agency grant H98230- 16-1-0309. 1 2 IGOR DOLGACHEV AND ALEXANDER DUNCAN 1. Introduction 3 Let X be a smooth cubic surface in P defined over an algebraically closed field | of arbitrary characteristic p. The primary purpose of this paper is to classify the possible automorphism groups of X.
    [Show full text]
  • UNIVERSAL TORSORS and COX RINGS Brendan Hassett and Yuri
    UNIVERSAL TORSORS AND COX RINGS by Brendan Hassett and Yuri Tschinkel Abstract. — We study the equations of universal torsors on rational surfaces. Contents Introduction . 1 1. Generalities on the Cox ring . 4 2. Generalities on toric varieties . 7 3. The E6 cubic surface . 12 4. D4 cubic surface . 23 References . 26 Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [7], [9], [8], [22], [23], [24]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277. 2 BRENDAN HASSETT and YURI TSCHINKEL bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [21]. This approach was further developed in the work of Peyre, de la Bret`eche, and Heath-Brown [19], [20], [3], [14]. Colliot-Th´el`eneand Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj}j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface.
    [Show full text]
  • Shadow of a Cubic Surface
    Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary .
    [Show full text]
  • A Mathematical Background to Cubic and Quartic Schilling Models
    Utrecht University A Mathematical Background to Cubic and Quartic Schilling Models Author: I.F.M.M.Nelen A thesis presented for the degree Master of Science Supervisor: Prof. Dr. F. Beukers Second Reader: Prof. Dr. C.F. Faber Masters Programme: Mathematical Sciences Department: Departement of Mathematics University: Utrecht University Abstract At the end of the twentieth century plaster models of algebraic surface were constructed by the company of Schilling. Many universities have some series of these models but a rigorous mathematical background to the theory is most often not given. In this thesis a mathematical background is given for the cubic surfaces and quartic ruled surfaces on which two series of Schilling models are based, series VII and XIII. The background consists of the classification of all complex cubic surface through the number and type of singularities lying on the surface. The real cubic sur- faces are classified by which of the singularities are real and the number and configuration of the lines lying on the cubic surface. The ruled cubic and quartic surfaces all have a singular curve lying on them and they are classified by the degree of this curve. Acknowledgements Multiple people have made a contribution to this thesis and I want to extend my graditute here. First of all I want to thank Prof. Dr. Frits Beukers for being my super- visor, giving me an interesting subject to write about and helping me get the answers needed to finish this thesis. By his comments he gave me a broader un- derstanding of the topic and all the information I needed to complete this thesis.
    [Show full text]
  • Moduli Spaces and Invariant Theory
    MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6.
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Universal Unramified Cohomology of Cubic Fourfolds Containing a Plane
    UNIVERSAL UNRAMIFIED COHOMOLOGY OF CUBIC FOURFOLDS CONTAINING A PLANE ASHER AUEL, JEAN-LOUIS COLLIOT-THEL´ ENE,` R. PARIMALA Abstract. We prove the universal triviality of the third unramified cohomology group of a very general complex cubic fourfold containing a plane. The proof uses results on the unramified cohomology of quadrics due to Kahn, Rost, and Sujatha. Introduction 5 Let X be a smooth cubic fourfold, i.e., a smooth cubic hypersurface in P .A well-known problem in algebraic geometry concerns the rationality of X over C. Expectation. The very general cubic fourfold over C is irrational. Here, \very general" is usually taken to mean \in the complement of a countable union of Zariski closed subsets" in the moduli space of cubic fourfolds. At present, however, not a single cubic fourfold is provably irrational, though many families of rational cubic fourfolds are known. 5 If X contains a plane P (i.e., a linear two dimensional subvariety of P ), then X 2 is birational to the total space of a quadric surface bundle Xe ! P by projecting 2 from P . Its discriminant divisor D ⊂ P is a sextic curve. The rationality of a cubic fourfold containing a plane over C is also a well-known problem. Expectation. The very general cubic fourfold containing a plane over C is irra- tional. Assuming that the discriminant divisor D is smooth, the discriminant double 2 cover S ! P branched along D is then a K3 surface of degree 2 and the even Clifford 2 algebra of the quadric fibration Xe ! P gives rise to a Brauer class β 2 Br(S), called the Clifford invariant of X.
    [Show full text]
  • The Galois Group of the 27 Lines on a Rational Cubic Surface
    The Galois group of the 27 lines on a rational cubic surface Arav Karighattam Mentor – Yongyi Chen May 18, 2019 MIT-PRIMES Conference Cubic surfaces and lines A cubic surface is the set of all points (x, y, z) satisfying a cubic polynomial equation. In this talk we will be considering smooth cubic surfaces. Example. The Fermat cubic is the set of all points (x, y, z) with + + = 1. 3 3 3 − Cubic surfaces and lines The lines in the Fermat cubic + + = 1 are: 3 3 3 (-ζ, t, -ωt),− (-ζt, t, -ω), (-ζt, -ω, t), where t varies over , and ζ and ω are cube roots of 1. Notice that there areℂ 27 lines on this cubic surface. Theorem. (Cayley, 1849) Every smooth cubic surface contains exactly 27 lines. Cubic surfaces and lines This is an example of a cubic surface. Source: 27 Lines on a Cubic Surface by Greg Egan http://www.gregegan.net/ Projective space Define n-dimensional projective space as the space of nonzero (n + 1)-tuples of complex numbers … up to scaling. We may embed n-dimensional space ℙ into projective space by setting one of the 0 ∶ 1 ∶ 2 ∶ ∶ projective coordinates to 1. Projective space can be considered as ℂ with points at infinity. A line in is a linear embedding . We can parametrize a general line in ℂ as [s : t : as3 + bt : cs + dt] for some fixed1 complex3 numbers a, b, c, and d. 3 For the restℙ of the talk, we will be consideringℙ ↪ ℙ cubic surfaces in projective space. ℙ The blow-up of at six points 2 ℙ The blow-up of at the origin is \ {0} with a line at 0, with each point on the line corresponding to a2 tangent direction at2 the point.
    [Show full text]
  • Hitchin 70 9-11 September 2016 University of Oxford Abstracts of Talks Bill Goldman (University of Maryland) Title: the Dynamic
    Hitchin 70 9-11 September 2016 University of Oxford Abstracts of Talks Bill Goldman (University of Maryland) Title: The dynamics of classifying geometric structures Abstract: The general theory of locally homogeneous geometric structures (flat Cartan connections) originated with Ehresmann's 1936 paper Sur les espaces localement homogènes. Their classification leads to interesting dynamical systems. For example, classifying Euclidean geometries on the torus leads to the usual action of the SL(2,Z) on the upper half-plane. This action is dynamically trivial, with a quotient space the familiar modular curve. In contrast, the classification of other simple geometries on the torus leads to the standard linear action of SL(2,Z) on R^2, with chaotic dynamics and a pathological quotient space. This talk describes such dynamical systems, where the moduli space is described by the nonlinear symmetries of cubic equations like Markoff’s equation x^2 + y^2 + z^2 = x y z. Both trivial and chaotic dynamics arise simultaneously, relating to possibly singular hyperbolic metrics on surfaces of Euler characteristic equals -1. Maxim Kontsevich (IHES) Title: Noncommutative twistor families Abstract: I will talk about a joint work with Y. Soibelman. We describe how a holomorphic symplectic manifold produces a twistor family of triangulated categories. The picture is based on the combination of ideas from Fukaya categories, from wall-crossing and from deformation quantization. In particular, we can extend the notion of harmonic metrics to q-difference equations. Sasha Beilinson (University of Chicago) Title: The singular support and the characteristic cycle Abstract: I will describe a theory of ss & cc for 'etale sheaves on varieties over a field of any characteristic developed recently by Takeshi Saito and AB.
    [Show full text]
  • Arxiv:1912.07347V1 [Math.AG] 16 Dec 2019
    TWENTY-SEVEN QUESTIONS ABOUT THE CUBIC SURFACE KRISTIAN RANESTAD - BERND STURMFELS We present a collection of research questions on cubic surfaces in 3-space. These questions inspired a collection of papers to be published in a special issue of the journal Le Matematiche. This article serves as the introduc- tion to that issue. The number of questions is meant to match the number of lines on a cubic surface. We end with a list of problems that are open. 1. Introduction One of most prominent results in classical algebraic geometry, derived two cen- turies ago by Cayley and Salmon, states that every smooth cubic surface in com- plex projective 3-space P3 contains 27 straight lines. This theorem has inspired generations of mathematicians, and it is still of importance today. The advance of tropical geometry and computational methods, and the strong current interest in applications of algebraic geometry, led us to revisit the cubic surface. Section 3 of this article gives a brief exposition of the history of that classical subject and how it developed. We offer a number of references that can serve as first entry points for students of algebraic geometry who wish to learn more. In December 2018, the second author compiled the list of 27 question. His original text was slightly edited and it now constitutes our Section 2 below. These questions were circulated, and they were studied by various groups of young mathematicians, in particular in Leipzig and Berlin. In May 2019, a one- day seminar on cubic surfaces was held in Oslo. Different teams worked on the arXiv:1912.07347v1 [math.AG] 16 Dec 2019 questions and they made excellent progress.
    [Show full text]