Rapid Characterization of Aquatic Hyphomycetes by Matrix-Assisted

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Characterization of Aquatic Hyphomycetes by Matrix-Assisted Rapid characterization of aquatic hyphomycetes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Julien Cornut, Sophie de Respinis, Mauro Tonolla, Orlando Petrini, Felix Bärlocher, Eric Chauvet, Andreas Bruder To cite this version: Julien Cornut, Sophie de Respinis, Mauro Tonolla, Orlando Petrini, Felix Bärlocher, et al.. Rapid characterization of aquatic hyphomycetes by matrix-assisted laser desorption/ionization time-of- flight mass spectrometry. Mycologia, Mycological Society of America, 2019, 111 (1), pp.177-189. 10.1080/00275514.2018.1528129. hal-02359264 HAL Id: hal-02359264 https://hal.archives-ouvertes.fr/hal-02359264 Submitted on 16 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/24585 Official URL: https://doi.org/10.1080/00275514.2018.1528129 To cite this version: Cornut, Julien and De Respinis, Sophie and Tonolla, Mauro and Petrini, Orlando and Bärlocher, Felix and Chauvet, Eric and Bruder, Andreas Rapid characterization of aquatic hyphomycetes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. (2019) Mycologia, 111 (1). 177-189. ISSN 0027-5514 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Rapid characterization of aquatic hyphomycetes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Julien Cornuta,b*, Sophie De Respinis a*, Mauro Tonollaa,c, Orlando Petrini d, Felix Bärlocher e, Eric Chauvet f, and Andreas Bruder a,b aLaboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Via Mirasole 22A, 6501 Bellinzona, Switzerland; bInstitute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland, Trevano Campus, 6952 Canobbio, Switzerland; cMicrobial Ecology Laboratory, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Switzerland; dPOLE Pharma Consulting, Breganzona, Switzerland; eDepartment of Biology, Mount Allison University, Sackville, News Brunswick E4L1G7, Canada; fEcoLab, Université de Toulouse, CNRS, UPS, INPT, 31062 Toulouse, France ABSTRACT KEYWORDS Protein fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spec- Aquatic fungi; ITS trometry (MALDI-TOF MS) is a rapid, reliable, and economical method to characterize isolates of sequencing; mass terrestrial fungi and other microorganisms. The objective of our study was to evaluate the spectrometry; morphology; suitability of MALDI-TOF MS for the identification of aquatic hyphomycetes, a polyphyletic phylogeny; proteomics; taxonomy group of fungi that play crucial roles in stream ecosystems. To this end, we used 34 isolates of 21 aquatic hyphomycete species whose identity was confirmed by spore morphology and internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) nuc rDNA sequencing. We tested the efficiency of three protein extraction methods, including chemical and mechanical treatments using 13 different protocols, with the objective of producing high-quality MALDI-TOF mass spectra. In addition to extraction protocols, mycelium age was identified as a key parameter affecting protein extraction efficiency. The dendrogram based on mass-spectrum similarity indicated good and relevant taxonomic discrimination; the tree structure was comparable to that of the phylogram based on ITS sequences. Consequently, MALDI-TOF MS could reliably identify the isolates studied and provided greater taxonomic accuracy than classical morphological methods. MALDI-TOF MS seems suited for rapid characterization and identification of aquatic hyphomycete species. INTRODUCTION Descals 1981). With more than 300 species of aquatic Aquatic hyphomycetes (also known as freshwater hyphomycetes described to date (Nikolcheva and hyphomycetes, amphibious fungi, or Ingoldian fungi) Bärlocher 2004; Shearer et al. 2007), spore morphology are a polyphyletic group of true fungi (Bärlocher 1992; may sometimes be insufficient for unambiguous iden- Belliveau and Bärlocher 2005). Most species belong to tification (Marvanová and Bärlocher 2001). Molecular Ascomycota and only about 10% to Basidiomycota techniques circumvent some of the shortcomings of (Belliveau and Bärlocher 2005; Baschien et al. 2006; morphological identification of spores, including diffi- Shearer et al. 2007; Bärlocher 2010). Aquatic hyphomy- culties in identifying mycelium and nonsporulating cetes are widely distributed across most biomes, strains (Bärlocher 2010). This has led to although some species appear to have restricted distri- a reassessment of the phylogeny of freshwater fungi butions (Bärlocher 2010; Jabiol et al. 2013; Duarte et al. (Nikolcheva and Bärlocher 2002; Baschien et al. 2006; 2016), occur on a wide range of plant material decom- Letourneau et al. 2010; Seena et al. 2010, 2012) and to posing in freshwaters, including leaves and wood, and the identification of cryptic species within accepted play a major role in the recycling of organic matter morphological complexes (Roldán et al. 1989; (Cornut et al. 2010; Krauss et al. 2011). Letourneau et al. 2010). Detailed taxonomic informa- Taxonomy of aquatic hyphomycetes has traditionally tion may be provided by cloning-sequencing been based on morphology and ontogeny of their large approaches (Bärlocher 2010, 2016). Next-generation and distinctly shaped spores with tetraradiate, sigmoid, sequencing (NGS) such as 454-pyrosequencing stands or variously branched forms (Ingold 1975; Webster and out among these new technologies as particularly CONTACT Andreas Bruder [email protected] *Julien Cornut and Sophie De Respinis contributed equally to this work. promising for large-scale and high-throughput species and/or DNA sequencing, with gene databases being identification in environmental samples and was suc- themselves still incomplete for aquatic hyphomycetes cessfully applied in studies of fungal ecology (Duarte (Clivot et al. 2014; Duarte et al. 2015). et al. 2015; Wurzbacher et al. 2015; Bärlocher 2016). Currently, the development of reference databases However, some of these established molecular techni- for reliable identification by MALDI-TOF MS is hin- ques are still cost- and labor-intensive, especially if dered by difficulties of obtaining high-quality spectra reliable identification requires sequencing of multiple from filamentous fungi (De Respinis et al. 2014). Lysis genes (Baschien et al. 2013). Furthermore, unambigu- of fungal cell walls (mainly composed of various poly- ous species identification is often hindered by incom- saccharides; Kemptner et al. 2009) before protein plete coverage of aquatic hyphomycete sequences in extraction from mycelium seems necessary to obtain genomic databases (see, e.g., Clivot et al. 2014; Duarte spectra of sufficient quality. However, this was chal- et al. 2015) and limitations of the commonly used lenged by De Carolis et al. (2012), who reported good internal transcribed spacer (ITS) barcode due to its fungal species differentiation without cell-wall lysis short length (e.g., Duarte et al. 2014). Consequently, using MALDI-TOF intact-cell mass spectrometry. the choice among these established methods may Furthermore, different cell-lysis methods applied in strongly influence estimates of community diversity earlier studies to various groups of fungi probably and composition (Fernandes et al. 2015). influence protein extraction efficiency (Hettick et al. Matrix-assisted laser desorption/ionization time-of- 2008; Marinach-Patrice et al. 2009; Chalupová et al. flight mass spectrometry (MALDI-TOF MS) may pro- 2012; De Respinis et al. 2014). To our knowledge, vide a valuable alternative to complement the estab- these methods have never been compared lished methods described above. MALDI-TOF MS is systematically. being routinely used for the identification of human The objective of our study was to address these bacterial and fungal pathogens (Li et al. 2000; Fenselau crucial knowledge gaps, by (i) developing the applica- and Demirev 2001; Bright et al. 2002; Erhard et al. tion of MALDI-TOF MS to aquatic hyphomycetes; (ii) 2008; Santos et al. 2010; Croxatto et al. 2012). The comparing protein extraction efficiency among differ- technique is based on the measurement of a large ent methods and protocols; and (iii) initiating the range of dominant constitutive proteins, such as ribo- development of a spectral database that would allow somal and housekeeping proteins and cell-surface rapid identification of aquatic hyphomycetes. We tested structures (Stackebrandt et al. 2005). Previous studies different protein extraction protocols based on previous showed the potential of MALDI-TOF MS to character- applications of MALDI-TOF MS to fungi to produce ize and identify terrestrial filamentous
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Phylogeny and Taxonomy of Obscure Genera of Microfungi
    Persoonia 22, 2009: 139–161 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X461701 Phylogeny and taxonomy of obscure genera of microfungi P.W. Crous1, U. Braun2, M.J. Wingfield3, A.R. Wood4, H.D. Shin5, B.A. Summerell6, A.C. Alfenas7, C.J.R. Cumagun8, J.Z. Groenewald1 Key words Abstract The recently generated molecular phylogeny for the kingdom Fungi, on which a new classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an Brycekendrickomyces attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of hyphomycetes were collected. Chalastospora These fungi were subsequently established in culture, and subjected to DNA sequence analysis of the ITS and LSU Cyphellophora nrRNA genes to resolve species and generic questions related to these obscure genera. Brycekendrickomyces Dictyosporium (Herpotrichiellaceae) is introduced as a new genus similar to, but distinct from Haplographium and Lauriomyces. Edenia Chalastospora is shown to be a genus in the Pleosporales, with two new species, C. ellipsoidea and C. obclavata, phylogeny to which Alternaria malorum is added as an additional taxon under its oldest epithet, C. gossypii. Cyphellophora taxonomy eugeniae is newly described in Cyphellophora (Herpotrichiellaceae), and distinguished from other taxa in the genus. Thedgonia Dictyosporium is placed in the Pleosporales, with one new species, D. streliziae. The genus Edenia, which was Trochophora recently introduced for a sterile endophytic fungus isolated in Mexico, is shown to be a hyphomycete (Pleospo­ Verrucisporota rales) forming a pyronellea-like synanamorph in culture. Thedgonia is shown not to represent an anamorph of Vonarxia Mycosphaerella, but to belong to the Helotiales.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Lichenicolous Species of Hainesia Belong to Phacidiales (Leotiomycetes) and Are Included in an Extended Concept of Epithamnolia
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: http://www.tandfonline.com/loi/umyc20 Lichenicolous species of Hainesia belong to Phacidiales (Leotiomycetes) and are included in an extended concept of Epithamnolia Ave Suija, Pieter van den Boom, Erich Zimmermann, Mikhail P. Zhurbenko & Paul Diederich To cite this article: Ave Suija, Pieter van den Boom, Erich Zimmermann, Mikhail P. Zhurbenko & Paul Diederich (2017): Lichenicolous species of Hainesia belong to Phacidiales (Leotiomycetes) and are included in an extended concept of Epithamnolia, Mycologia, DOI: 10.1080/00275514.2017.1413891 To link to this article: https://doi.org/10.1080/00275514.2017.1413891 View supplementary material Accepted author version posted online: 13 Dec 2017. Published online: 08 Mar 2018. Submit your article to this journal Article views: 72 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2017.1413891 Lichenicolous species of Hainesia belong to Phacidiales (Leotiomycetes) and are included in an extended concept of Epithamnolia Ave Suija a, Pieter van den Boomb, Erich Zimmermannc, Mikhail P. Zhurbenko d, and Paul Diederiche aInstitute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005 Tartu, Estonia; bArafura 16, NL-5691 JA Son, The Netherlands; cScheunenberg 46, CH-3251 Wengi, Switzerland; dKomarov Botanical Institute, Professor Popov 2, St. Petersburg, 197376, Russia; eMusée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg, Luxembourg ABSTRACT ARTICLE HISTORY The lichenicolous taxa currently included in the genus Hainesia were studied based on the nuclear Received 4 April 2017 rDNA (18S, 28S, and internal transcribed spacer [ITS]) genes.
    [Show full text]
  • Evolution of Helotialean Fungi (Leotiomycetes, Pezizomycotina): a Nuclear Rdna Phylogeny
    Molecular Phylogenetics and Evolution 41 (2006) 295–312 www.elsevier.com/locate/ympev Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny Zheng Wang a,¤, Manfred Binder a, Conrad L. Schoch b, Peter R. Johnston c, Joseph W. Spatafora b, David S. Hibbett a a Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610, USA b Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA c Herbarium PDD, Landcare Research, Private bag 92170, Auckland, New Zealand Received 5 December 2005; revised 21 April 2006; accepted 24 May 2006 Available online 3 June 2006 Abstract The highly divergent characters of morphology, ecology, and biology in the Helotiales make it one of the most problematic groups in traditional classiWcation and molecular phylogeny. Sequences of three rDNA regions, SSU, LSU, and 5.8S rDNA, were generated for 50 helotialean fungi, representing 11 out of 13 families in the current classiWcation. Data sets with diVerent compositions were assembled, and parsimony and Bayesian analyses were performed. The phylogenetic distribution of lifestyle and ecological factors was assessed. Plant endophytism is distributed across multiple clades in the Leotiomycetes. Our results suggest that (1) the inclusion of LSU rDNA and a wider taxon sampling greatly improves resolution of the Helotiales phylogeny, however, the usefulness of rDNA in resolving the deep relationships within the Leotiomycetes is limited; (2) a new class Geoglossomycetes, including Geoglossum, Trichoglossum, and Sarcoleo- tia, is the basal lineage of the Leotiomyceta; (3) the Leotiomycetes, including the Helotiales, Erysiphales, Cyttariales, Rhytismatales, and Myxotrichaceae, is monophyletic; and (4) nine clades can be recognized within the Helotiales.
    [Show full text]
  • Ricardo De Nardi Fonoff
    Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Diversidade de fungos do solo da Mata Atlântica Vívian Gonçalves Carvalho Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Microbiologia Agrícola Piracicaba 2012 2 Vívian Gonçalves Carvalho Bacharel e Licenciada em Ciências Biológicas Diversidade de fungos do solo da Mata Atlântica versão revisada de acordo com a resolução CoPGr 6018 de 2011 Orientador: Prof. Dr. MARCIO RODRIGUES LAMBAIS Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Microbiologia Agrícola Piracicaba 2012 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP Carvalho, Vívian Gonçalves Diversidade de fungos do solo da Mata Atlântica / Vívian Gonçalves Carvalho. - - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2012. 203 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2012. 1. Biodiversidade 2. Fungos - Mata Atlântica 3. Filogenia 4. Matéria orgânica do solo 5. Microbiologia do solo 6. Reação em cadeia por polimerase 7. Redes neurais I. Título CDD 631.46 C331d “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 Dedico este trabalho aos meus pais, Célia e Afrânio , por me ajudarem a realizar meus sonhos, pelo apoio incessante aos meus estudos, pelo amor que sempre deram. Aos meus irmãos, Ana Cláudia, Vinícius e Afrânio, pelo apoio, amor e por entenderem minha ausência. Aos meus sobrinhos, Isabella, Felipe e Samira, minhas alegrias. À vó Ana (in memorian), pelas orações, carinho, e força sempre. Vocês foram essenciais para que eu chegasse até aqui.
    [Show full text]
  • Dominated Forest Plot in Southern Ontario and the Phylogenetic Placement of a New Ascomycota Subphylum
    Above and Below Ground Fungal Diversity in a Hemlock- Dominated Forest Plot in Southern Ontario and the Phylogenetic Placement of a New Ascomycota Subphylum by Teresita Mae McLenon-Porter A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto © Copyright by Teresita Mae McLenon-Porter 2008 Above and below ground fungal diversity in a Hemlock- dominated forest plot in southern Ontario and the phylogenetic placement of a new Ascomycota subphylum Teresita Mae McLenon-Porter Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto 2008 General Abstract The objective of this thesis was to assess the diversity and community structure of fungi in a forest plot in Ontario using a variety of field sampling and analytical methods. Three broad questions were addressed: 1) How do different measures affect the resulting view of fungal diversity? 2) Do fruiting bodies and soil rDNA sampling detect the same phylogenetic and ecological groups of Agaricomycotina? 3) Will additional rDNA sampling resolve the phylogenetic position of unclassified fungal sequences recovered from environmental sampling? Generally, richness, abundance, and phylogenetic diversity (PD) correspond and identify the same dominant fungal groups in the study site, although in different proportions. Clades with longer branch lengths tend to comprise a larger proportion of diversity when assessed using PD. Three phylogenetic-based comparisons were found to be variable in their ability to ii detect significant differences. Generally, the Unifrac significance measure (Lozupone et al., 2006) is the most conservative, followed by the P-test (Martin, 2002), and Libshuff library comparison (Singleton et al., 2001) with our dataset.
    [Show full text]
  • BB RR TT 22000066 a Molecular Phylogenetic Study of Selected In
    BBB RRR TTT 222000000666 .. Research Reports A Molecular Phylogenetic Study of Selected in Goldian Species Nattawut Boonyuen1,2, Somsak Sivichai2, Jeerapun Worapong1,3 and Nigel Hywel-Jones2 1Department of Biotechnology, Faculty of Science, Mahidol University, Rajdhevee, Bangkok 10400, Thailand, 2BIOTEC, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathumthani 12120, Thailand, 3Center for Biotechnology, Institute of Science and Technology for Research and Development, Mahidol University, Bhudthamonthon 4 Rd., Nakornpathom 73170, Thailand Taxonomic studies of Ingoldian fungi are chiefly based on morphological and ontogenetic traits. However, some of them need to be reclassified especially at the genus and species levels. Sivichai et al. (2003) proposed that the anamorph of Hymenoscyphus varicosporoides is a waiting to be described species of Tricladium rather than of the genus Varicosporium sp. as originally delineated by Tubaki (1966). Additionally, the two species, H. varicosporoides and Cudoniella indica, possess almost the same morphological characteristics except for differences in asci staining. Thus, we conducted a molecular phylogenic analysis of complete ITS1-5.8S-ITS2 sequences of 37 selected Ingoldian taxa in Helotiaceae to clarify sexual-asexual links among these two conspecific genera. Significantly, phylogenetic data suggested that 37 selected genera formed a monophyletic group in Helotiaceae, Helotiales. The results indicate that both type species have an anamorph best assigned to T. indicum with a well-supported clade (82%) containing either teleomorph genera of H. varicosporoides, C. indica, or its anamorph. The molecular data suggest that the presence or absence of a staining reaction for the apical ring is not a phylogenetically reliable character. The highly significant identity 98-99.5% of ITS1-2 and 5.8S regions of C.
    [Show full text]
  • Evolution of Reproductive Morphology in Leaf Endophytes
    Evolution of Reproductive Morphology in Leaf Endophytes Zheng Wang1*, Peter R. Johnston2, Zhu L. Yang3, Jeffrey P. Townsend1 1 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America, 2 Herbarium PDD, Landcare Research, Auckland, New Zealand, 3 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China Abstract The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi. Citation: Wang Z, Johnston PR, Yang ZL, Townsend JP (2009) Evolution of Reproductive Morphology in Leaf Endophytes. PLoS ONE 4(1): e4246. doi:10.1371/ journal.pone.0004246 Editor: Jerome Chave, Centre National de la Recherche Scientifique, France Received September 25, 2008; Accepted December 17, 2008; Published January 22, 2009 Copyright: ß 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Fungal Systematics and Evolution PAGES 169–215
    VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 169–215 doi.org/10.3114/fuse.2018.01.08 New and Interesting Fungi. 1 P.W. Crous1,2,3*, R.K. Schumacher4, M.J. Wingfield5, A. Akulov6, S. Denman7, J. Roux2, U. Braun8, T.I. Burgess9, A.J. Carnegie10, K.Z. Váczy11, E. Guatimosim12, P.B. Schwartsburd13, R.W. Barreto14, M. Hernández-Restrepo1, L. Lombard1, J.Z. Groenewald1 1Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa 3Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands 4Hölderlinstraße 25, 15517 Fürstenwalde / Spree, Germany 5Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa 6Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine 7Forest Research, Alice Holt Lodge, Farnham, Surrey, UK 8Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany 9Centre for Phytophthora Science and Management, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia 10Forest Health & Biosecurity, NSW Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Locked Bag 5123, Parramatta NSW 2124, Australia 11Centre for Research and Development, Eszterházy Károly University, H-3300 Eger, Hungary 12Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, CEP: 96170-000, São Lourenço do Sul, Brazil 13Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP: 36.570-900, Viçosa, Minas Gerais, Brazil 14Departamento de Fitopatologia, Universidade Federal de Viçosa, CEP: 36.570-900, Viçosa, Minas Gerais, Brazil *Corresponding author: [email protected] Editor-in-Chief KeyProf.
    [Show full text]
  • Helotiales, Ascomycota) Based on Cultural, Morphological, and Molecular Studies1
    American Journal of Botany 92(9): 1565–1574. 2005. LIFE HISTORY AND SYSTEMATICS OF THE AQUATIC DISCOMYCETE MITRULA (HELOTIALES, ASCOMYCOTA) BASED ON CULTURAL, MORPHOLOGICAL, AND MOLECULAR STUDIES1 ZHENG WANG,2 MANFRED BINDER, AND DAVID S. HIBBETT Department of Biology, Clark University, 950 Main Street, Worcester, Massachusetts 01610 USA Mitrula species represent a group of aquatic discomycetes with uncertain position in the Helotiales and an unknown life history. Mitrula species were studied using a combination of cultural, morphological, and molecular techniques. Pure colonies were isolated from Mitrula elegans, and conidia were induced in vitro. Herbarium materials from Europe, Asia, and North America were studied. Sequences of rDNA, including partial small subunit rDNA, large subunit DNA and ITS, were used to infer phylogenetic relationships both within Mitrula and between Mitrula and other inoperculate discomycetes, with special attention to fungi that resemble Mitrula in morphology or ecology. Equally weighted parsimony analyses, likelihood analyses, constrained parsimony analyses, and Bayesian analyses were performed. Results suggest that (1) the anamorph of M. elegans produces brown bicellular conidia, (2) a new subalpine species M. brevispora is distinct, (3) more than six lineages and clades can be recognized in Mitrula, (4) the morphological species M. elegans is not monophyletic, (5) a close relationship between Mitrula and either Geoglossaceae or Sclerotiniaceae is not supported, (6) the Helotiaceae is paraphyletic, and (7) Mitrula belongs to a clade within the Helotiales that also includes other aero-aquatic genera, Cudoniella, Hydrocina, Vibrissea, Ombrophila, and Hymenoscyphus. Key words: aquatic fungi; decomposition; ecology; mitosporic fungi; vernal pools. Mitrula Fr. species, the so-called swamp beacons, represent litter in forest ecosystems.
    [Show full text]