Resource Partitioning Among Parasitoids (Hymenoptera: Braconidae) of Phoracantha Semipunctata in Their Native Range

Total Page:16

File Type:pdf, Size:1020Kb

Resource Partitioning Among Parasitoids (Hymenoptera: Braconidae) of Phoracantha Semipunctata in Their Native Range Biological Control 19, 223–231 (2000) doi:10.1006/bcon.2000.0872, available online at http://www.idealibrary.com on Resource Partitioning among Parasitoids (Hymenoptera: Braconidae) of Phoracantha semipunctata in Their Native Range T. D. Paine, E. O. Paine, L. M. Hanks,1 and J. G. Millar Department of Entomology, University of California, Riverside, California 92521 Received January 11, 2000; accepted August 5, 2000 INTRODUCTION The Eucalyptus longhorned borer, Phoracantha semipunctata (F.), is native to Australia, but it has The Eucalyptus longhorned borer, Phoracantha been introduced without its natural enemies into semipunctata (F.), is distributed throughout the six many parts of the world in which its Eucalyptus spp. biogeographical regions of Australia (Wang et al., host has been planted. The beetle has developed large 1996), where it colonizes Eucalyptus L’Heritier and populations in these novel habitats and has been re- Angophora Cav. spp. (Duffy, 1963). Females lay eggs sponsible for the mortality of large numbers of trees. on the bark surface, frequently under loose bark Although there is a considerable catalogue of the para- (Drinkwater, 1975). Newly eclosed larvae mine sitoids of the beetle in Australia, limited ecological through the outer bark and feed extensively in the information on the assemblage of parasitoids attack- cambium, phloem, and outer xylem tissues (Hanks et ing P. semipunctata is available. We removed bark al., 1993a). In its native range, beetles utilize broken from 40 felled trees, recorded gallery width and bark branches and weakened or downed trees for larval thickness over parasitized larvae, and removed all development (Tooke, 1935; Chararas, 1969). parasitoids. Adult size, sex, and species were recorded Eucalyptus spp. have been widely planted through- when the parasitoid pupae eclosed. Syngaster lepidus out the world as a commercial source of cellulose, fuel, Brulle`,Jarra phoracantha Austin, Quicke, and Marsh, J. maculipennis Austin, Quicke, and Marsh, and J. and timber or as ornamental trees. P. semipunctata painei Austin and Dangerfield were most commonly has been accidentally introduced into many of these collected. The solitary parasitoid S. lepidus preferred regions and has become a significant mortality factor smaller larvae than did the gregarious Jarra spp. The for the trees, particularly in regions with Mediterra- two species with shorter ovipositors, J. maculipennis nean climates (Bytinski-Salz and Neumark, 1952; and J. painei, parasitized larvae under thinner bark Chararas, 1969; Drinkwater, 1975; Ivory, 1977; Caval- than did the other two species with longer ovipositors. caselle, 1980; Cadahia, 1986; Gonzalez-Tirado, 1986; There was a significant positive correlation between Hanks et al., 1993a, 1995a). It has been recognized host larval size and number of parasitoid pupae of the previously that adult beetles are attracted to cut logs gregarious species. Also, there was a significant posi- and to stressed trees in these novel environments tive correlation between host larval size and parasi- (Drinkwater, 1975; Ivory, 1977; Gonzalez-Tirado, toid adult size. The ecological relationships between 1986). Trees that appear to be healthy and growing this assemblage of parasitoids and their beetle host rapidly are colonized by the beetles at densities suffi- may be useful in establishing an effective biological cient to destroy the cambium tissue, resulting in the control program. © 2000 Academic Press death of the host, suggesting that trees are capable of Key Words: solitary parasitoid; gregarious parasi- vigorous growth even under stressful conditions that toid; Cerambycidae; Braconidae; resource partition- favor beetle attack. Consequently, the evaluation of ing; biological control; Phoracantha; Jarra; Syn- tree stress and susceptibility to beetle-caused injury is gaster; Eucalyptus. very difficult. Trees are capable of surviving high levels of moisture stress in the absence of the beetle (T.D.P., pers. obs.), but introduction of the beetle combined with moisture stress has created a significant mortal- 1 Current address: Department of Entomology, University of Illi- ity risk to the trees. However, Hanks et al. (1991b) nois, 505 South Goodwin Avenue, Urbana, IL 61801. demonstrated that high bark moisture content is a 223 1049-9644/00 $35.00 Copyright © 2000 by Academic Press All rights of reproduction in any form reserved. 224 PAINE ET AL. significant factor in the resistance of the tree to beetle the end of November 1995 to obtain small wood sam- infestation. ples to test cellulose and pulping characteristics. The As with many other arthropods, many factors may remainder of each trunk was left on the ground at the function to regulate the density of P. semipunctata site. populations. Competition among larvae (Ivory, 1977; The felled trees were sampled between 20 and 31 Mendel et al., 1984; Mendel, 1985; Haddan and Fraval, May 1996. All of the felled trees had been infested by P. 1988), environmental conditions (Hanks et al., 1991a), semipunctata, and if the borer larvae had been para- host tree susceptibility (Hanks et al., 1991b, 1995a), sitized, development of the parasitoid had reached the and host tree suitability (Hanks et al., 1993b) have late larval or pupal stages. Bark was removed from the been examined as mortality factors in geographic loca- entire infested portion of the trunk of each tree to tions where both the trees and the beetles are intro- expose the parasitized beetle larvae. Parasitoid larvae duced species. However, because the insect has not or pupal cocoons were collected and placed into sepa- been a significant problem in Australia (Duffy, 1963), rate vials for each individual host larvae. The width of there has been little work on population dynamics in the host larval gallery, the bark thickness covering the its native range. gallery, the date, and the collection site were recorded Natural enemies have been long recognized as criti- on each vial. cal factors in the regulation of insect populations The braconid wasps that use P. semipunctata larvae within ecological communities (e.g., Hairston et al., as hosts are idiobiont parasitoids. Ovipositing female 1960). Whereas the limitations on beetle population wasps inject a paralyzing venom into the host larvae growth imposed by the relations between the insect prior to oviposition, halting further growth or feeding and their host trees may be similar in the introduced by the larva. Thus, the larval gallery at the time of and native ranges of the insect, the mortality caused by parasitization provides a permanent record of host lar- natural enemies in Australia also may be critical in val size, even though the larva may have been totally regulating the population and limiting its pest status. consumed by the developing wasp. A previous study Several important taxonomic studies have described conducted in Victoria had established that there was a the parasitoid species that utilize P. semipunctata as a strong correlation between the P. semipunctata larval host (Austin et al., 1994; Austin and Dangerfield, length and the width of the larval gallery (Hanks et al., 1997); however, the ecological interactions among the 2000). Consequently, terminal gallery width was used assemblage of parasites exploiting the beetle as a re- as an indication of host larval size to examine the source are not well understood. For the purposes of preference of ovipositing parasitoid females. introducing natural enemies for biological control, it The vials containing the parasitoids were sent by air may be useful to understand the relationships among to the quarantine facility at the Department of Ento- parasitoids and their hosts in the native range so that mology, University of California, Riverside. The vials the efficacy of introductions into new environments can were examined daily for emergence of adult wasps. be optimized for maximum regulation of target host Each emerged adult was briefly anesthetized with CO2, populations. The objectives of the research presented the species and sex were determined, and the length of here were to determine (1) parasitism levels by an one hind tibia was measured. The wasps were subse- assemblage of species in one region of Australia and (2) quently placed into rearing colonies as part of a larger partitioning of resources among parasitoid species and biological control program for P. semipunctata in Cal- sex allocation within species, as a function of larval ifornia. host size and tree bark thickness. These data also The differences among species in host size preference provide a benchmark of information that will be nec- and in bark thickness were determined using analysis essary for evaluation of the success of the introductions of variance (General Linear Models Procedure) and in the new geographic range. Tukey’s Studentized range test (Sokal and Rohlf, 1981) for means separation on SAS (SAS Institute, 1988). MATERIALS AND METHODS Regression analysis (SAS Institute, 1988) was used to determine the relationship between number of parasi- Four E. globulus Labill. and E. nitens (Deane and toid pupae or emerged wasp size and host larval size. Maiden) Maiden plantations (Amcor Plantations Pro- prietary Limited) growing within a 40-km radius of RESULTS Morwell, Victoria, Australia were used as study sites. All trees within a plantation were planted in a single A total of 185 parasitized P. semipunctata larvae year, and all the plantations were established between were discovered when the bark was removed
Recommended publications
  • The Interaction of Drought and the Outbreak of Phoracantha
    The interaction of drought and the outbreak of Phoracantha semipunctata (Coleoptera: Cerambycidae) on tree collapse in the Northern Jarrah (Eucalyptus marginata) forest. by Stephen Seaton (BSc Environmental Science) This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Science (Honours) School of Biological Sciences and Biotechnology, Murdoch University, Perth, Western Australia November 2012 ii Declaration I declare that that the work contained within this thesis is an account of my own research, except where work by others published or unpublished is noted, while I was enrolled in the Bachelor of Science with Honours degree at Murdoch University, Western Australia. This work has not been previously submitted for a degree at any institution. Stephen Seaton November 2012 iii Conference Presentations Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Drought induced tree collapse and the outbreak of Phoracantha semipunctata poses a risk for forest under climate change. Abstract presented at the Combined Biological Sciences Meeting (CBSM) 2012, 24th of August. University Club, University of Western Australia. Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Occurrence of Eucalyptus longicorn borer (Phoracantha semipunctata) in the Northern Jarrah Forest following severe drought. To be presented at The Australian Entomological Society - 43rd AGM & Scientific Conference and Australasian Arachnological Society - 2012 Conference. 25th – 28th November. The Old Woolstore, Hobart. iv Acknowledgments I greatly appreciate the guidance, enthusiasm and encouragement and tireless support from my supervisors Dr George Matusick and Prof Giles Hardy in the Centre of Excellence for Climate Change Forests and Woodland Health. I particularly appreciate the interaction and productive discussions regarding forest ecology and entomology and proof reading the manuscript.
    [Show full text]
  • IOBC/WPRS Working Group “Integrated Plant Protection in Fruit
    IOBC/WPRS Working Group “Integrated Plant Protection in Fruit Crops” Subgroup “Soft Fruits” Proceedings of Workshop on Integrated Soft Fruit Production East Malling (United Kingdom) 24-27 September 2007 Editors Ch. Linder & J.V. Cross IOBC/WPRS Bulletin Bulletin OILB/SROP Vol. 39, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-213-5 http://www.iobc-wprs.org Integrated Plant Protection in Soft Fruits IOBC/wprs Bulletin 39, 2008 Contents Development of semiochemical attractants, lures and traps for raspberry beetle, Byturus tomentosus at SCRI; from fundamental chemical ecology to testing IPM tools with growers.
    [Show full text]
  • Forest Pest Species Profile
    FFFOREST PPPEST SSSPECIES PPPROFILE November 2007 Phoracantha recurva Newman, 1840 and Phoracantha semipunctata (Fabricius, 1775) Phoracantha recurva: Other scientific names: Order and Family: Coleoptera: Cerambycidae Common names: eucalyptus longhorned borer; eucalyptus borer; longicorn beetle; yellow phoracantha borer; yellow longicorn beetle Phoracantha semipunctata: Other scientific names: Order and Family: Coleoptera: Cerambycidae Common names: eucalyptus longhorned borer; common eucalypt longhorn; common eucalypt longicorn; eucalypt longhorn; eucalyptus borer; longicorn beetle; blue gum borer; firewood beetle Phoracantha recurva and Phoracantha semipunctata are both serious borer pests of eucalypts, particularly those planted outside their natural range. In their native Australia they are considered minor pests attacking damaged, stressed or newly felled trees but they have become established in many temperate and tropical regions worldwide where they have been known to kill even healthy trees. Phoracantha recurva (L) and Phoracantha semipunctata (R) (Photos: Pests and Diseases Image Library (PaDIL) – www.padil.gov.au) DISTRIBUTION Phoracantha recurva: Native : Australia Introduced : Africa: Malawi, Morocco, South Africa, Tunisia (1999), Zambia Asia and the Pacific: New Zealand, Papua New Guinea Europe: Greece (one record), Spain (1998) Latin America and the Caribbean: Argentina (1997), Brazil (2001), Chile (1997), Uruguay (1998) North America: US (1995) Phoracantha semipunctata: Native : Australia Introduced : Africa: Algeria (1972),
    [Show full text]
  • Chapter 11. Host Preference Testing for Parasitoids of a Eucalyptus Borer in California
    ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 11. HOST PREFERENCE TESTING FOR PARASITOIDS OF A EUCALYPTUS BORER IN CALIFORNIA T. D. Paine,1 J. G. Millar,1 and L. M. Hanks2 1Department of Entomology, University of California, Riverside, California [email protected] 2Department of Entomology, University of Illinois, Urbana, Illinois DESCRIPTION OF PEST INVASION AND PROBLEM Of the more than 700 species in the genus Eucalyptus L’Heritier native to Australia and New Guinea, approximately 90 species have been introduced into North America over the last 150 years (Doughty, 2000). Eucalyptus trees were first propagated in California from seed brought from Australia. Insect pests and diseases associated with living trees were not introduced with the seeds. As a result, the trees growing in California were relatively free of pests until the last two decades of the twentieth century (Paine and Millar, 2002). Phoracantha semipunctata (Fabricius) (Coleoptera: Cerambycidae) is native to Australia but has been accidentally introduced into virtually all of the Eucalyptus-growing regions of the world, including California, and is causing significant tree mortality in many of those areas (Paine et al., 1993, 1995, 1997). The beetles are attracted to volatile chemical cues produced by downed Eucalyptus and Angophora Cav. trees, broken branches, or standing stressed trees that are suitable larval host material (Chararas, 1969; Drinkwater, 1975; Ivory, 1977; Gonzalez- Tirado, 1987; Hanks et al., 1991). After mating on the bark surface, females oviposit under loose, exfoliated bark. The neonate larvae mine through the outer bark and feed in the nutri- tious inner bark, cambium, and outer layers of xylem (Hanks et al., 1993).
    [Show full text]
  • Biological Control of Introduced Pests of Eucalyptus in California T.D
    66 Paine and Millar ________________________________________________________________________ BIOLOGICAL CONTROL OF INTRODUCED PESTS OF EUCALYPTUS IN CALIFORNIA T.D. Paine and J.G. Millar Department of Entomology, University of California, Riverside, California U.S.A. INTRODUCTION Implementation of a biological control program against a tree-killing insect presents a number of significant problems. The natural enemies do not act in a remedial fashion; that is, the tree does not necessarily recover from an infestation as a result of natural enemy action and cannot be resampled on a regular basis. Rather, the predators and parasites act to reduce total population size across a broad area, thereby reducing the risk of subsequent infestation of any specific tree. Because there is no remedial action, approaches for colonization and evaluation of natural enemies are unique. The euca- lyptus longhorned borer, Phoracantha semipunctata F. (Coleoptera: Cerambycidae) was first discov- ered in California in the mid-1980s. Three braconid parasitoid wasps were collected during a series of exploration and survey trips conducted in Victoria, Australia. The egg parasitoid, Avetianella longoi Siscaro (Hymenoptera: Encyrtidae), has been introduced and is now established throughout Califor- nia. Releases of the larval parasitoids, Syngaster lepidus Brullè and Jarra phoracantha Austin, Quicke, and Marsh (Hymenoptera: Braconidae), have produced evidence of at least one generation of progeny but no conclusive evidence of establishment. The combination of biological control and cultural man- agement of the trees appears to have reduced the populations of the borer. However, a second borer, Phoracantha recurva Newman, was discovered in California in 1995 and has now replaced P. semipuncata in the southern part of the state.
    [Show full text]
  • Antennal Sensilla of the Yellow Longicorn Beetle Phoracantha
    Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie, 2011, n° 33 (1), 19-29. Antennal sensilla of the yellow longicorn beetle Phoracantha recurva Newman, 1840: distribution and comparison with Phoracantha semipunctata (Fabricius, 1775) (Coleoptera: Cerambycidae) Michel J. FAUCHEUX Faculté des Sciences et des Techniques, Laboratoire d’Endocrinologie des Insectes Sociaux, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France. e-mail: [email protected] Abstract. The male and female antennal sensilla of the yellow longicorn Phoracantha recurva are here studied with scanning electron microscopy in order to compare them with those of Phoracantha semipunctata and to appreciate the similarities and differences between the two species. Twelve types of sensilla have been observed: aporous Böhm’s sensilla with a proprioceptive function; multiporous sensilla basiconica types I, II, III, IV which are all presumably olfactory; uniporous sensilla chaetica with a contact-chemoreceptive function; aporous sensilla chaetica of types I, II, III with a tactile mechanoreceptive function, and aporous sensilla filiformia of types I, II, III with a putative vibroreceptive function. Most of the sensilla basiconica I are concentrated in numerous clusters disposed at regular intervals on each flagellomere, which may constitute an enlarged odor-sensing area on the antennae. Unlike P. semipunctata, a sexual dimorphism was found in the numbers of sensilla basiconica I in favour of the male antennae, one and a half times greater in the male than in the female. Sensilla basiconica III and IV have not been described in P. semipunctata. The most striking difference is the presence in P.
    [Show full text]
  • (Coleoptera) of Australia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS McKeown, K. C., 1947. Catalogue of the Cerambycidae (Coleoptera) of Australia. Australian Museum Memoir 10: 1–190. [2 May 1947]. doi:10.3853/j.0067-1967.10.1947.477 ISSN 0067-1967 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE AUSTRALIAN MUSEUM, SYDNEY MEMOIR X. CATALOGUE OF THE CERAMBYCIDAE (COLEOPTERA) OF AUSTRALIA BY KEITH C. McKEOWN, F.R.Z.S., Assistant Entomologist. The Australian Museum. PUBLISHED BY ORDER OF THE TRUSTEES A. B. Walkom, D.%., Director. Sydney, May 2, I947 PREFACE. The accompanying Catalogue of the Cerambycidae is the first, dealing solely with Australian genera and species, to be published since that of Pascoe in 1867. Masters' Catalogue of the Described Coleoptera of Australia, 1885-1887, included the Cerambycidae, and was based on the work of Gemminger and Harold. A new catalogue has been badly needed owing to the large number of new species described in recent years, and the changes in the already complicated synonymy. The Junk catalogue, covering the Coleoptera of the world, is defective in many respects, as well as being too unwieldy, and too costly for the average Australian worker. Many of the references in the Junk catalogue are inaccurate, synonymy misleading, and the genera under which the species were originally described omitted, and type localities are not quoted. In this catalogue every care has been taken to ensure accuracy, and the fact that it has been used, in slip form, over a number.
    [Show full text]
  • Handbook of Zoology
    Handbook of Zoology Founded by Willy Kükenthal Editor-in-chief Andreas Schmidt-Rhaesa Arthropoda: Insecta Editors Niels P. Kristensen & Rolf G. Beutel Authenticated | [email protected] Download Date | 5/8/14 6:22 PM Richard A. B. Leschen Rolf G. Beutel (Volume Editors) Coleoptera, Beetles Volume 3: Morphology and Systematics (Phytophaga) Authenticated | [email protected] Download Date | 5/8/14 6:22 PM Scientific Editors Richard A. B. Leschen Landcare Research, New Zealand Arthropod Collection Private Bag 92170 1142 Auckland, New Zealand Rolf G. Beutel Friedrich-Schiller-University Jena Institute of Zoological Systematics and Evolutionary Biology 07743 Jena, Germany ISBN 978-3-11-027370-0 e-ISBN 978-3-11-027446-2 ISSN 2193-4231 Library of Congress Cataloging-in-Publication Data A CIP catalogue record for this book is available from the Library of Congress. Bibliografic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de Copyright 2014 by Walter de Gruyter GmbH, Berlin/Boston Typesetting: Compuscript Ltd., Shannon, Ireland Printing and Binding: Hubert & Co. GmbH & Co. KG, Göttingen Printed in Germany www.degruyter.com Authenticated | [email protected] Download Date | 5/8/14 6:22 PM Cerambycidae Latreille, 1802 77 2.4 Cerambycidae Latreille, Batesian mimic (Elytroleptus Dugés, Cerambyc inae) feeding upon its lycid model (Eisner et al. 1962), 1802 the wounds inflicted by the cerambycids are often non-lethal, and Elytroleptus apparently is not unpal- Petr Svacha and John F. Lawrence atable or distasteful even if much of the lycid prey is consumed (Eisner et al.
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Eucalyptus Gobulus Labill. Bluegum Eucalyptus Myrtaceae Myrtle Family Roger G
    Eucalyptus gobulus Labill. Bluegum Eucalyptus Myrtaceae Myrtle family Roger G. Skolmen and F. Thomas Ledig Bluegum eucalyptus (Eucalyptus globulus), also worldwide have been to locations with mild, called Tasmanian bluegum, is one of the world’s best temperate climates, or to high, cool elevations in known eucalyptus trees. It is the “type” species for the tropical areas (8). The ideal climate is said to be that genus in California, Spain, Portugal, Chile, and many of the eastern coast of Portugal, with no severe dry other locations. One of the first tree species intro- season, mean annual rainfall 900 mm (35 in), and duced to other countries from Australia, it is now the minimum temperature never below -7” C (20’ F). In most extensively planted eucalyptus in the world. coastal California, the tree does well in only 530 mm (21 in) rainfall accompanied by a pronounced dry Habitat season, primarily because frequent fogs compensate for lack of rain. A similar situation is found in Chile Native Range where deep fertile soils as well as fogs mitigate the effect of low, seasonal precipitation (8). In Hawaii, Four subspecies are recognized. The type tree, sub- bluegum eucalyptus does best in plantations at about species globulus, is largely confined to the southeast 1200 mm (4,000 ft) where the rainfall is 1270 mm coast of Tasmania but also grows in small pockets on (50 in) annually and is evenly distributed or has a the west coast of Tasmania, on islands in the Bass winter maximum. Seasonality of rainfall is not of Strait north of Tasmania, and on Cape Otway and critical importance to the species.
    [Show full text]
  • Evaluation of Eucalyptus Triantha Timber for Structural Applications
    Silva Lusitana, 28(1): 1 - 13, 2020 1 © INIAV, Oeiras, Portugal Evaluation of Eucalyptus triantha Timber for Structural Applications *Marta C.J.A. Nogueira, Victor A. de Araujo, Juliano S. Vasconcelos, André L. Christoforo, Francisco A.R. Lahr Abstract. Eucalypt wood is an important raw material with multiple uses applied for furniture, pulp and paper, charcoal, biomass, and construction. Sixteen tests were performed to evaluate physical and mechanical properties of Eucalyptus triantha, which could estimate the possibility of utilization of this woody material in construction. In all, about 267 repeats were realized. Two moisture contents were regarded according to the Brazilian and American standard documents: fiber saturation point (30%) and standard dried point (12%). Results were statistically treated with t-test and demonstrated increases in six mechanical properties from Eucalyptus triantha wood species: rupture moduli in perpendicular and parallel compressions and static bending; elasticity moduli in parallel tensile, perpendicular compression, and static bending. Volumetric mass and bulk densities were practically stable. Physical and mechanical properties estimation evinced that Eucalyptus triantha wood can be used in structural elements. Key words: Eucalypt; wood; density; moisture content; strength Avaliação da Madeira de Eucalyptus triantha para Aplicações Estruturais Sumário. A madeira de eucalipto é uma importante matéria-prima de múltiplos usos utilizada em móveis, papel e celulose, carvão vegetal, biomassa e construção. Dezesseis testes foram realizados para avaliar as propriedades físicas e mecânicas do Eucalyptus triantha, os quais puderam estimar a possibilidade de utilização desse material madeirável na construção. Ao todo, aproximadamente 267 repetições foram realizadas. Dois teores de umidade foram considerados segundo os documentos normativos brasileiro e norte-americano: ponto de saturação das fibras (30%) e estado seco padrão * Full Professor Ph.D., Federal University of Mato Grosso, Dept.
    [Show full text]
  • Phoracantha Recurva (Coleoptera: Cerambycidae): First Report in the Atlantic Rainforest of Minas Gerais, Brazil
    Phoracantha recurva (Coleoptera: Cerambycidae): first report in the Atlantic rainforest of Minas Gerais, Brazil Carlos A. Corrêa1*, Norivaldo dos Anjos1, Amélia G. Carvalho2, Marcus A. Soares3, Valdeir C. dos Santos Junior1, and José C. Zanuncio1 Eucalyptus species (Myrtaceae), Australian trees with fast growth and with temperate climate with dry winters and hot summers (Cwa, Kop- wood suitable for different purposes (Pirralho et al. 2014; IBÁ 2017), have pen climate classification system) (Sá Júnior et al. 2012). become the trees with the largest planted area in the world. Unfortunate- Two C. citriodora trees were cut near the forest nursery of the Uni- ly, the increase of the planted area with Eucalyptus spp. and related spe- versidade Federal de Viçosa in early Jul 2017. Galleries were excavated cies, and the international trade of its products, are increasing accidental under the bark (Fig. 1A), and 1 P. recurva male adult was observed in introductions of exotic insects (Mansfield 2016; Almeida et al. 2018). the trunk of the cut trees (Fig. 1B). The 2 C. citriodora trees had sparse Phoracantha Newman (Coleoptera: Cerambycidae), a genus from crowns, leaf fall, and exit holes from adult insects on their bark. The Australia and New Guinea with 40 longhorn borer beetle species, use source of the stress that predisposed these trees to P. recurva damage healthy or weakened Angophora, Corymbia, and Eucalyptus (Myrtace- was not determined. ae) trees or their logs (Wang et al. 1995, 1999) for development. Trees Phoracantha recurva differs from P. semipunctata by possessing damaged by Phoracantha spp. have decayed crowns with discolored, long, dense gold-colored hairs below each antennal segment, and the dried, and withered leaves, bark with cracks, and sawdust and expelled elytra with a greater amount of cream to yellow color.
    [Show full text]