Skeleton of Late Paleocene Plesiadapis Cookei

Total Page:16

File Type:pdf, Size:1020Kb

Skeleton of Late Paleocene Plesiadapis Cookei SKELETON OF LATE PALEOCENE SKELETON OF LATE SKELETON OF LATE PALEOCENE PLESIADAPIS COOKEI (MAMMALIA, EUARCHONTA): LIFE HISTORY, LOCOMOTION, AND PHYLOGENETIC RELATIONSHIPS DOUG M. BOYER and PLESIADAPIS COOKEI PHILIP D. GINGERICH DOUG M. BOYER and PHILIP D. GINGERICH SKELETON OF LATE PALEOCENE PLESIADAPIS COOKEI (MAMMALIA, EUARCHONTA): LIFE HISTORY, LOCOMOTION, AND PHYLOGENETIC RELATIONSHIPS PAPERS ON PALEONTOLOGY — RECENT NUMBERS 26. The Clarkforkian Land-Mammal Age and Mammalian Faunal Composition across the Paleocene-Eocene Boundary by Kenneth D. Rose (1981) 27. The Evolutionary History of Microsyopoidea (Mammalia, ?Primates) and the Relationship between Plesiadapiformes and Primates by Gregg F. Gunnell (1989) 28. New Earliest Wasatchian Mammalian Fauna from the Eocene of Northwestern Wyoming: Composition and Diversity in a Rarely Sampled High-Floodplain Assemblage by Philip D. Gingerich (1989) 29. Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra) by J. G. M. Thewissen (1990) 30. Marine Mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: Stratigraphy, Age, and Paleoenvironments by Philip D. Gingerich (1992) 31. Terrestrial Mesonychia to Aquatic Cetacea: Transformation of the Basicranium and Evolution of Hearing in Whales by Zhexi Luo and Philip D. Gingerich (1999) 32. Fishes of the Mio-Pliocene Ringold Formation, Washington: Pliocene Capture of the Snake River by the Columbia River by Gerald R. Smith, Neil Morgan, and Eric Gustafson (2000) 33. Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming by Philip D. Gingerich (ed.) and others (2001) 34. Form, Function, and Anatomy of Dorudon atrox (Mammalia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt by Mark D. Uhen (2003) 35. The Tiffanian Land-Mammal Age (Middle and Late Paleocene) in the Northern Bighorn Basin, Wyoming by Ross Secord (2008) 36. Earliest Eocene Mammalian Fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, Southern Bighorn Basin, Wyoming by Kenneth D. Rose, Amy E. Chew, Rachel H. Dunn, Mary J. Kraus, Henry C. Fricke, and Shawn P. Zack (2012) 37. Late Eocene Sea Cows (Mammalia, Sirenia) from Wadi Al Hitan in the Western Desert of Fayum, Egypt by Iyad S. Zalmout and Philip D. Gingerich (2012) 38. Skeleton of Late Paleocene Plesiadapis cookei (Mammalia, Euarchonta): Life History, Locomotion, and Phylogenetic Relationships by Doug M. Boyer and Philip D. Gingerich (2019) Museum of Paleontology The University of Michigan Ann Arbor, Michigan 48109-1085 SKELETON OF LATE PALEOCENE PLESIADAPIS COOKEI (MAMMALIA, EUARCHONTA): LIFE HISTORY, LOCOMOTION, AND PHYLOGENETIC RELATIONSHIPS Frontispiece: Jay H. Matternes’ restoration of the skeleton, musculature, and pellage of Plesiadapis cookei based on UM 87990. Images ©Jay H. Matternes. Used by permission of the artist. ii SKELETON OF LATE PALEOCENE PLESIADAPIS COOKEI (MAMMALIA, EUARCHONTA): LIFE HISTORY, LOCOMOTION, AND PHYLOGENETIC RELATIONSHIPS Doug M. Boyer Department of Evolutionary Anthropology, Biological Sciences Building, 130 Science Drive, Duke University Durham, North Carolina 27708 [email protected] Philip D. Gingerich Department of Earth and Environmental Sciences and Museum of Paleontology University of Michigan Ann Arbor, Michigan 48109-1085 [email protected] UNIVERSITY OF MICHIGAN PAPERS ON PALEONTOLOGY NO. 38 2019 Papers on Paleontology No. 38 Museum of Paleontology The University of Michigan Ann Arbor, Michigan 48109-1085 Matt Friedman, Director Jeffrey A. Wilson, Editor TABLE OF CONTENTS Frontispiece ...................................................................... ii IV. Postcranial Morphology ......................................... 51 Description ............................................................ 51 Title Page ......................................................................... iii V. Life History .............................................................. 127 Table of Contents ............................................................. v Body weight and encephalization .................... 127 Sex of UM 87990 ............................................. 130 List of Figures .................................................................. vi Sequence of tooth eruption and rate of growth 131 List of Tables .................................................................... viii Ontogenetic stage of development of UM 87990 131 Discussion ........................................................ 133 Appendix Figures and Tables ........................................... viii VI. Phylogeny ................................................................. 134 Cladistic methods ............................................. 134 Abstract ............................................................................ xi Results .............................................................. 136 I. Introduction ............................................................... 1 VII. Discussion and Conclusions ................................... 143 History of study ...................................................... 1 Cranial morphology ......................................... 143 Objectives ............................................................... 13 Postcranial morphology ................................... 145 Institutional abbreviations ...................................... 14 Life history ....................................................... 148 Generic abbreviations ............................................ 14 Phylogenetic relationships ............................... 149 Anatomical terminology ........................................ 14 Summary and conclusions................................ 151 Material examined.................................................. 14 VIII. Literature Cited ....................................................... 153 Methods .................................................................. 15 VIIII. Appendices ........................................................... 159 Measurements and analysis ................................... 15 I. Cranial and dental figures and measurements 159 Acknowledgments ................................................. 16 II. Postcranial measurements ........................... 171 II. Systematic Paleontology ........................................... 17 III. Body weight estimation.............................. 211 Stratigraphic range of Plesiadapis cookei ............. 18 IV. Cladistic evaluation of new observations ... 216 III. Cranial Morphology ................................................. 21 V. Crania of other North American and Euro- Description ........................................................ 21 pean Plesiadapidae ........................................... 227 Comparisons ...................................................... 38 VI. CT-scan documentation .............................. 263 v LIST OF FIGURES Figure Page Figure Page 1. Skeleton of Plesiadapis cookei, UM 87990, from 23. Basicranium of the South American plains University of Michigan locality SC-117 in the viscacha Lagostomus maximus ............................. 44 Clarks Fork Basin of Wyoming ............................ 2 24. Petrosal and ectotympanic of Lagostomus 2. Phylogenetic relationships of Plesiadapidae ........ 3 maximus ................................................................ 45 3. Distribution of Plesiadapis cookei-bearing locali- 25. Petrosal of Indri indri .......................................... 46 ties in the Clarks Fork and northern Bighorn ba- 26. Basicranium of Ignacius clarkforkensis ............... 47 sins of Wyoming ................................................... 18 27. Basicranium of Acidomomys hebeticus ................ 48 4. University of Michigan locality SC-117 yielding 28. Plot of posterior carotid foramen sizes of UM 87990 skeleton of Plesiadapis cookei ........... 19 selected plesiadapiforms with those of extant 5. Stratigraphic ranges of taxa defining the early, primates ............................................................... 49 middle, and late Clarkforkian land-mammal age, 29. Cervical vertebrae of Plesiadapis cookei (UM Cf-1, Cf-2, and Cf-3, respectively, in the Clarks 87990). .................................................................. 52 Fork Basin of northwestern Wyoming ................. 19 30. Thoracic vertebrae of Plesiadapis cookei (UM 6. Cranium of Plesiadapis cookei (UM 87990) in 87990) ................................................................... 55 dorsal view ........................................................... 24 31. Lumbar vertebrae of Plesiadapis cookei (UM 7. Premaxilla of Plesiadapis cookei (UM 87990) .... 25 87990) ................................................................... 57 8. Maxillary teeth of Plesiadapis cookei (UM 32. Sacrum of Plesiadapis cookei (UM 87990) ......... 58 87990) ................................................................... 26 33. Caudal vertebrae of Plesiadapis cookei (UM 9. Cranium of Plesiadapis cookei (UM 87990) in 87990) ................................................................... 60 left lateral view ..................................................... 27 34. Sternebrae of Plesiadapis cookei (UM 87990) .... 61 10. Cranium of Plesiadapis cookei (UM 87990) in 35. Ribs of Plesiadapis cookei (UM 87990) .............. 62 palatal or ventral view .......................................... 28 36. Clavicle and scapula of Plesiadapis cookei (UM 11. Cranium
Recommended publications
  • Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Cultural Resource Management Department of Anthropology 10-2019 Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) Samantha Mills Follow this and additional works at: https://repository.stcloudstate.edu/crm_etds Part of the Archaeological Anthropology Commons Recommended Citation Mills, Samantha, "Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)" (2019). Culminating Projects in Cultural Resource Management. 28. https://repository.stcloudstate.edu/crm_etds/28 This Thesis is brought to you for free and open access by the Department of Anthropology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Cultural Resource Management by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) by Samantha M. Mills A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Functional Morphology October, 2019 Thesis Committee: Matthew Tornow, Chairperson Mark Muñiz Bill Cook Tafline Arbor 2 Abstract Toward the end of the Middle Eocene (40-37mya), the environment started to decline on a global scale. It was becoming more arid, the tropical forests were disappearing from the northern latitudes, and there was an increase in seasonality. Research of the Chadronian (37- 33.7mya) in the Great Plains region of North America has documented the persistence of several mammalian taxa (e.g. primates) that are extinct in other parts of North America.
    [Show full text]
  • The Adductor Pectoral Fin Muscle of Micropogonias Furnieri (Perciformes
    ZOOLOGIA 33(6): e20160101 ISSN 1984-4689 (online) www.scielo.br/zool MORPHOLOGY AND PHYSIOLOGY The adductor pectoral fin muscle ofMicropogonias furnieri (Perciformes: Sciaenidae): a morphological and histochemical study María Sol Hernández1, María Victoria Longo1*, Clelia Viviana Devincenti1 & Alcira Ofelia Díaz1 1Instituto de Investigaciones Marinas y Costeras (IIMyC), Departamento de Biología, FCEyN, CONICET, Universidad Nacional de Mar del Plata. Funes 3250, 3° piso, (7600) Mar del Plata, Argentina. *Corresponding author. E-mail: [email protected] ABSTRACT. The adductor pectoral fin muscle in post-spawning females of the white croakerMicropogonias furnieri (Desmarest, 1823) is described from a morphological, histochemical and morphometric perspectives. A description of the morphological characteristics was conducted after dissections in different layers, down to the deep layer. Five muscles were found: superficial, medial, radial and deep adductors, and dorsal arrector. Their fibers were studied after applying histochemical techniques: succinic dehydrogenase (SDH) to reveal mitochondria, periodic acid-Schiff (PAS) for glycogen, Sudan black for lipids, myosin adenosinetriphosphatase (mATPase) to reveal the types of fibers, and modified mATPase to evidence the capillaries. Fiber diameters were measured and the number of capillaries was counted. Fiber subtypes named small, medium and large were found within red, pink and white fibers, the latter prevailing. Staining homogeneity was observed in white fibers after alkaline pre-incubations. The number of capillaries decreased from red to white fibers. Due to the prevalence of white fibers, the adductor muscle of the pectoral fins appears to be capable of rapid and discontinuous movements, which are important to body stabilization during subcarangiform swimming. The homogenous staining of white fibers observed in this research corresponds to the post-spawning gonad stage studied.
    [Show full text]
  • Diagnosis and Differentiation of the Order Primates
    YEARBOOK OF PHYSICAL ANTHROPOLOGY 30:75-105 (1987) Diagnosis and Differentiation of the Order Primates FREDERICK S. SZALAY, ALFRED L. ROSENBERGER, AND MARIAN DAGOSTO Department of Anthropolog* Hunter College, City University of New York, New York, New York 10021 (F.S.S.); University of Illinois, Urbanq Illinois 61801 (A.L. R.1; School of Medicine, Johns Hopkins University/ Baltimore, h4D 21218 (M.B.) KEY WORDS Semiorders Paromomyiformes and Euprimates, Suborders Strepsirhini and Haplorhini, Semisuborder Anthropoidea, Cranioskeletal morphology, Adapidae, Omomyidae, Grades vs. monophyletic (paraphyletic or holophyletic) taxa ABSTRACT We contrast our approach to a phylogenetic diagnosis of the order Primates, and its various supraspecific taxa, with definitional proce- dures. The order, which we divide into the semiorders Paromomyiformes and Euprimates, is clearly diagnosable on the basis of well-corroborated informa- tion from the fossil record. Lists of derived features which we hypothesize to have been fixed in the first representative species of the Primates, Eupri- mates, Strepsirhini, Haplorhini, and Anthropoidea, are presented. Our clas- sification of the order includes both holophyletic and paraphyletic groups, depending on the nature of the available evidence. We discuss in detail the problematic evidence of the basicranium in Paleo- gene primates and present new evidence for the resolution of previously controversial interpretations. We renew and expand our emphasis on postcra- nial analysis of fossil and living primates to show the importance of under- standing their evolutionary morphology and subsequent to this their use for understanding taxon phylogeny. We reject the much advocated %ladograms first, phylogeny next, and scenario third” approach which maintains that biologically founded character analysis, i.e., functional-adaptive analysis and paleontology, is irrelevant to genealogy hypotheses.
    [Show full text]
  • Mammalia, Plesiadapiformes) As Reflected on Selected Parts of the Postcranium
    SHAPE MEETS FUNCTION: STRUCTURAL MODELS IN PRIMATOLOGY Edited by Emiliano Bruner Proceedings of the 20th Congress of the International Primatological Society Torino, Italy, 22-28 August 2004 MORPHOLOGY AND MORPHOMETRICS JASs Journal of Anthropological Sciences Vol. 82 (2004), pp. 103-118 Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium Dionisios Youlatos1, Marc Godinot2 1) Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece. email [email protected] 2) Ecole Pratique des Hautes Etudes, UMR 5143, Case Courrier 38, Museum National d’Histoire Naturelle, Institut de Paleontologie, 8 rue Buffon, F-75005 Paris, France Summary – Plesiadapis is one of the best-known Plesiadapiformes, a group of Archontan mammals from the Late Paleocene-Early Eocene of Europe and North America that are at the core of debates con- cerning primate origins. So far, the reconstruction of its locomotor behavior has varied from terrestrial bounding to semi-arboreal scansoriality and squirrel-like arboreal walking, bounding and claw climbing. In order to elucidate substrate preferences and positional behavior of this extinct archontan, the present study investigates quantitatively selected postcranial characters of the ulna, radius, femur, and ungual pha- langes of P. tricuspidens and P. n .sp. from three sites (Cernay-les-Reims, Berru, Le Quesnoy) in the Paris Basin, France. These species of Plesiadapis was compared to squirrels of different locomotor habits in terms of selected functional indices that were further explored through a Principal Components Analysis (PCA), and a Discriminant Functions Analysis (DFA). The indices treated the relative olecranon height, form of ulnar shaft, shape and depth of radial head, shape of femoral distal end, shape of femoral trochlea, and dis- tal wedging of ungual phalanx, and placed Plesiadapis well within arboreal quadrupedal, clambering, and claw climbing squirrels.
    [Show full text]
  • SMC 136 Gazin 1958 1 1-112.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • New Paleocene Skeletons and the Relationship of Plesiadapiforms to Crown-Clade Primates
    New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates Jonathan I. Bloch*†, Mary T. Silcox‡, Doug M. Boyer§, and Eric J. Sargis¶ʈ *Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL 32611; ‡Department of Anthropology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada, R3B 2E9; §Department of Anatomical Science, Stony Brook University, Stony Brook, NY 11794-8081; ¶Department of Anthropology, Yale University, P. O. Box 208277, New Haven, CT 06520; and ʈDivision of Vertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, CT 06520 Communicated by Alan Walker, Pennsylvania State University, University Park, PA, November 30, 2006 (received for review December 6, 2005) Plesiadapiforms are central to studies of the origin and evolution preserved cranium of a paromomyid (10) seemed to independently of primates and other euarchontan mammals (tree shrews and support a plesiadapiform–dermopteran link, leading to the wide- flying lemurs). We report results from a comprehensive cladistic spread acceptance of this phylogenetic hypothesis. The evidence analysis using cranial, postcranial, and dental evidence including supporting this interpretation has been questioned (7, 9, 13, 15, 16, data from recently discovered Paleocene plesiadapiform skeletons 19, 20), but no previous study has evaluated the plesiadapiform– (Ignacius clarkforkensis sp. nov.; Dryomomys szalayi, gen. et sp. dermopteran link by using cranial, postcranial, and dental evidence,
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Aspects of Tree Shrew Consolidated Sleep Structure Resemble Human Sleep
    ARTICLE https://doi.org/10.1038/s42003-021-02234-7 OPEN Aspects of tree shrew consolidated sleep structure resemble human sleep Marta M. Dimanico1,4, Arndt-Lukas Klaassen1,2,4, Jing Wang1,3, Melanie Kaeser1, Michael Harvey1, ✉ Björn Rasch 2 & Gregor Rainer 1 Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration 1234567890():,; parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. 1 Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
    [Show full text]
  • 5. the Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and Other Vertebrates
    Rendiconti della Società Paleontologica Italiana, 4, 2014, pp. 37-63 Excursion guidebook CBEP 2014-EPPC 2014-EAVP 2014-Taphos 2014 Conferences The Bolca Fossil-Lagerstätten: A window into the Eocene World (editors C.A. Papazzoni, L. Giusberti, G. Carnevale, G. Roghi, D. Bassi & R. Zorzin) 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates [ CARNEVALE, } F. BANNIKOV, [ MARRAMÀ, ^ C. TYLER & ? ZORZIN G. Carnevale, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; [email protected] A.F. Bannikov, Borisyak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117997, Russia; [email protected] G. Marramà, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 I-10125 Torino, Italy; [email protected] J.C. Tyler, National Museum of Natural History, Smithsonian Institution (MRC-159), Washington, D.C. 20560 USA; [email protected] R. Zorzin, Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria 9, I-37129 Verona, Italy; [email protected] INTRODUCTION ][` ~[~ `[ =5} =!+~ [=5~5 Ceratoichthys pinnatiformis5 #] ~}==5[ ~== }}=OP[~` [ "O**""P "}[~* "+5$!+? 5`=5` ~]!5`5 =5=[~5_ O"!P#! [=~=55~5 `#~! ![[[~= O"]!#P5`` `5} 37 G. Carnevale, A.F. Bannikov, G. Marramà, J.C. Tyler & R. Zorzin FIG. 1_Ceratoichthys pinnatiformis~=5"!Q5=` 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates `== `]5"`5`" O*!P[~ `= =5<=[ ~#_5` [#5!="[ [~OQ5=5""="P5 ` [~`}= =5^^+55 ]"5++"5"5* *5 [=5` _5 [==5 *5]5[=[[5* [5=~[` +~++5~5=!5 ["5#+?5?5[=~[+" `[+=\`` 5`55`_= [~===5[=[5 ```_`5 [~5+~++5 [}5` `=5} 5= [~5O# "~++[=[+ P5`5 ~[O#P #"5[+~` [=Q5 5" QRQ5$5 ][5**~= [`OQ= RP`=5[` `+5=+5`=` +5 _O# P5+5 O? ]P _ #`[5[=~ [+#+?5` !5+`}==~ `5``= "!=Q5 "`O? ]P+5 _5`~[ =`5= G.
    [Show full text]