Relation Between Two Twisted Inverse Image Pseudofunctors in Duality Theory
Relation between two twisted inverse image pseudofunctors in duality theory Srikanth B. Iyengar, Joseph Lipman and Amnon Neeman Abstract Grothendieck duality theory assigns to essentially-finite-type maps f of noetherian × ! schemes a pseudofunctor f right-adjoint to Rf∗, and a pseudofunctor f agreeing with f × when f is proper, but equal to the usual inverse image f ∗ when f is ´etale.We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken to an isomorphism by \compactly supported" versions of standard derived functors. Concrete realizations are described, for instance for maps of affine schemes. Applications include proofs of reduction theorems for Hochschild homology and cohomology, and of a remarkable formula for the fundamental class of a flat map of affine schemes. Introduction The relation in the title is given by a canonical pseudofunctorial map :(−)× ! (−)! between \twisted inverse image" pseudofunctors with which Grothendieck duality theory is concerned. These pseudofunctors on the category E of essentially-finite-type separated maps of noethe- rian schemes take values in bounded-below derived categories of complexes with quasi-coherent homology, see 1.1 and 1.2. The map , derived from the pseudofunctorial \fake unit map" ! id ! (−) ◦ R(−)∗ of Proposition 2.1, is specified in Corollary 2.1.4. A number of concrete exam- ples appear in x3. For instance, if f is a map in E, then (f) is an isomorphism if f is proper; but if f is, say, an open immersion, so that f ! is the usual inverse image functor f ∗ whereas f × is right-adjoint to Rf∗ , then (f) is usually quite far from being an isomorphism (see e.g., 3.1.2, 3.1.3 and 3.3).
[Show full text]