Sheaf Theory W. D. Gillam Department of Mathematics, Brown University E-mail address:
[email protected] Contents Introduction 7 Chapter I. Sheaves 9 1. Open sets 9 2. Presheaves 9 3. Representable presheaves 10 4. Generators 11 5. Sheaves 11 6. Stalks 13 7. Sheafification 15 8. Espaces ´etal´e 16 9. Sieves 18 10. Properties of Sh(X) 20 11. Examples 22 12. Exercises 22 Chapter II. Direct and Inverse Images 23 1. Functoriality of Ouv(X) 23 2. Direct images 23 3. Skyscraper sheaves 23 4. Inverse images 24 5. Sheaf Hom 26 6. Constant sheaves 27 7. Representable case 28 8. Inverse images and espaces ´etal´e 28 9. Faithfulness of X 7! Sh(X) 29 Chapter III. Descent 31 1. Canonical topology 31 2. Open maps and variants 31 3. Descent for spaces 31 4. Descent for sheaves 31 Chapter IV. Cohomology 33 1. Abelian categories 33 2. Enough injectives 33 3. Homological algebra 33 4. Abelian Sheaves 33 3 4 CONTENTS 5. Ringed spaces 36 6. Sheaf Ext 37 7. Supports 38 8. Sheaf cohomology 39 9. Acyclic sheaves 39 10. Flasque sheaves 39 11. Godement resolution 42 12. Soft sheaves 42 13. Filtered direct limits 42 14. Vanishing theorems 46 15. Higher direct images 46 16. Leray spectral sequence 47 17. Group quotients 48 18. Local systems 48 19. Examples 48 20. Exercises 48 Chapter V. Base Change 51 1. Proper maps 51 2. Comparison map 55 3. Homotopy invariance 57 Chapter VI. Duality 59 1. Adjoints for immersions 59 2. Extension by zero 61 3.