Properties of Honey from Tetragonisca Angustula Fiebrigi and Plebeia

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Honey from Tetragonisca Angustula Fiebrigi and Plebeia Properties of honey from Tetragonisca angustula fiebrigi and Plebeia wittmanni of Argentina Melina Araceli Sgariglia, Marta Amelia Vattuone, María Marta Sampietro Vattuone, José Rodolfo Soberón, Diego Alejandro Sampietro To cite this version: Melina Araceli Sgariglia, Marta Amelia Vattuone, María Marta Sampietro Vattuone, José Rodolfo Soberón, Diego Alejandro Sampietro. Properties of honey from Tetragonisca angustula fiebrigi and Plebeia wittmanni of Argentina. Apidologie, Springer Verlag, 2010, 41 (6), 10.1051/apido/2010028. hal-00892089 HAL Id: hal-00892089 https://hal.archives-ouvertes.fr/hal-00892089 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 41 (2010) 667–675 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2010 www.apidologie.org DOI: 10.1051/apido/2010028 Original article Properties of honey from Tetragonisca angustula fiebrigi and Plebeia wittmanni of Argentina* Melina Araceli Sgariglia1, Marta Amelia Vattuone1,MaríaMartaSampietro Vattuone2, José Rodolfo Soberon´ 1, Diego Alejandro Sampietro1 1 Cátedra de Fitoquímica, Instituto de Estudios Vegetales “Dr. A. R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Argentina 2 Cátedra de Antropología Biológica, Facultad de Ciencias Naturales e Instituto “Miguel Lillo”, Universidad Nacional de Tucumán Ayacucho 471 (4000) San Miguel de Tucumán, Argentina Received 16 September 2009 – Revised 13 February 2010 – Accepted 16 February 2010 Abstract – The composition of honey samples of Plebeia wittmanni (n = 10) and Tetragonisca angustula fiebrigi (n = 12) was analysed. The colours of all collected honeys were amber to dark amber and the pH varied. Moisture was lower than reported for other stingless bee honeys. Conductivity and ash content of P. wittmanni honey were higher than for T. angustula fiebrigi. Acidity of P. wittmanni honey was the highest ever mentioned for all other Plebeia species. Total sugars and sucrose were higher in T. angustula fiebrigi than in P. wittmanni honey. T. angustula fiebrigi honey showed the highest sucrose content ever mentioned and was rich in oligosaccharides. Both honeys split off sucrose, α-glucosides, trehalose, and amylose. The strongest hydrolytic activity was on sucrose, with high activity for T. angustula fiebrigi honey. Raffinose was also hydrolyzed. The honey of both bees inhibited bacterial growth. These properties support, at least in part, the medicinal use of the stingless bee honey by native people. Tetragonisca angustula fiebrigi / Plebeia wittmanni / Meliponini / composition / honey / antibacterial properties 1. INTRODUCTION produce a fine, delicate honey with a delicious flavor (Kent, 1984; van Veen et al., 1990a) More than 400–500 species of Neotropi- that allows their commercialization. The wax cal stingless bees occur in the tropical and of these bees is used for waxing thread, cov- subtropical regions of America (Wille, 1979; ering cheeses, making candles (Kent, 1984). Roubik, 1995; Camargo and Pedro, 2007). But traditionally, these honeys are not consid- Beekeeping with stingless bees, or meliponi- ered as food only. Mesoamerican aborigines culture, was an aboriginal pre-Hispanic prac- use honeys as medicine for treating skin erup- tice in Mesoamerica and their honey was tions (confluent smallpox), tongue sores, urine a well known food resource of the aborig- problems, as emollient for wounds, cracked ines in the North of Argentina (Alderete- lips, skin infections and bruises, and treatment Núñez, 1945). However, the introduction of of upper respiratory system disorders. Diluted Apis mellifera into the region produced a with water it is considered an ophthalmic rem- strong decline in meliponiculture. Different edy (Vit and Tomás-Barberán, 2004). Further- stingless bee species produce honeys with dis- more, it is used as purgative for women who tinct organoleptic properties. Some of them have just given birth and as aid during birth. Corresponding author: M.A. Vattuone, Because of the assigned properties, these hon- [email protected]; [email protected] eys are sold to local pharmacies at a higher * Manuscript editor: Klaus Hartfelder Article published by EDP Sciences 668 M.A. Sgariglia et al. price than A. mellifera honey (van Veen et al., 2.2.2. Acidity and pH 1990b). Several Meliponini species are recorded in Free acidity was determined by titration and pH the North of Argentina, and several are used as was estimated using a digital pH meter Model HI food and medicine. In Tucumán Province, Ar- 8519 (Hanna Instrument). gentina, one may frequently encounter, even in the cities, a small black bee known as “pusquiyo” or “pusquillo” that was identified 2.2.3. Refraction index as Plebeia wittmanni. Another stingless bee from the same region with the common name The measurements were done with an Abbe re- = fractometer (Atago, Japan), all taken at room tem- “angelito” or “rubiecita” ( little blond) was ◦ identified as Tetragonisca angustula fiebrigi. perature (26 C). Before measurements, the refrac- tometer’s sample compartment and window were Despite the frequent occurrence of these sting- first cleaned with acetone. less bees, there are no Argentinean regulations for Meliponini honeys. Some regulations re- Apis mellifera fer to honey (Bianchi, 1990), 2.2.4. Electrical conductivity and these are very similar to the European Di- rections and Regulations, or even more de- The electrical conductivity was measured at tailed, and in accordance with the Codex Al- 25 ◦CusingapH/Conductivity meter Model 20 imentarius, International Honey Commission (Denver Instrument). The instrument was calibrated (CODEX 1969, 1987, 2001). using 0.01 M KCl. In the present study we report on colour, sugar composition, protein content, enzyme activities and antibacterial activity of honeys 2.2.5. Moisture from T. angustula fiebrigi and P. wittmanni of San Miguel de Tucumán, Argentina. For the determination of the moisture content, 2.50 g of each sample was placed in a flat dish and oven-dried at 105 ◦C for three hours, covered, 2. MATERIALS AND METHODS cooled in a desiccator and weighed. The sample was then re-dried for one hour in the oven, cooled and reweighed. The process was repeated at one 2.1. Honey sources hour drying intervals until a constant weight was obtained. Values were expressed as moisture per- P. wittmanni (n = 10) and T. angustula fiebrigi centages. Each analysis was performed in triplicate. (n = 12) honeys were collected around the City of San Miguel de Tucumán, (26◦ 48 30 S65◦ 13 03 W) Argentina. The colonies were transferred from 2.2.6. Ash content logs to wooden boxes of 20 × 20 × 10 cm in the case of P. wittmanni, and 30 × 30 × 30 cm for T. For ash content determination, 2.50 g of each angustula fiebrigi, with removable bottom and lid sample was put in a crucible and dried in an oven parts. Honey sampled during December 2005 and at 105 ◦C for three hours to prevent loss by foam- January 2006 was taken from closed pots by suction ing. After cooling it was ashed overnight in a Muf- with a syringeand immediately processed. fle oven at 600 ◦C. After cooling it was weighed to a constant weight. 2.2. Physicochemical properties 2.3. Sugar determinations 2.2.1. Colour 2.3.1. Mono and disaccharides The colour of the samples was determined using Total neutral sugars were determined by the phe- the Lovibond comparator. nol sulfuric acid method (Dubois et al., 1956) with Studies on Meliponini honey from Argentina 669 glucose as standard. Reducing sugars were deter- buffer (pH 5.2), 40 μL distilled water, and 10 μL mined by the Somogyi-Nelson method (Nelson, of 0.6 M sucrose or 50 μLof0.6Mraffinose, 1944; Somogyi, 1945) using glucose (Sigma- trehalose or 10% amylase, respectively (Sigma- Aldrich, Saint Louis, Missouri, USA) as standard. Aldrich, USA) in a final volume of 0.1 mL. The as- Sucrose and fructose (Sigma-Aldrich, USA) were says were performed at 37 ◦C for 30 min. Reactions determined by the resorcinol method of Cardini were stopped by heating at 100 ◦Cfor2min. et al. (1955) using sucrose as standard. Glucose The enzymatic hydrolysis and quantification was determined by the glucose-oxidase-peroxidase of sugars was determined as reducing power re- (Sigma-Aldrich, USA) coupled assay (Jorgensen lease when sucrose or raffinose is used as sub- and Andersen, 1973) with glucose as standard. strate (Nelson, 1944; Somogyi, 1945); by the re- sorcinol method (Cardini et al., 1955), and/or by the specific measurement of glucose and fructose 2.3.2. Oligosaccharides produced by the glucose-oxidase-peroxidase assay (Sigma-Aldrich, USA) (Jorgensen and Andersen, A diluted honey sample (0.5 g of honey in 1973), and by the enzymatic assay of D-fructose 2 mL of distilled water) was adsorbed onto a 10 × dehydrogenase (Sigma-Aldrich, USA), respectively 2.2 cm carbon-Celite column. The column was (Ameyama, 1982). α-glucosidase activity was de- washed with 2 L of distilled water to eliminate solu- tected by reducing power release after enzyme ex- ble sugars and finally oligosaccharides were eluted tract was incubated with amylose as substrate. with 70% ethanol (Merck, Damstadt, Germany). Fractions of 1.6 mL were collected and pooled. Oligosaccharides were determined as total sugars 2.6. Antibacterial activity (Dubois et al., 1956). 2.6.1. Microorganisms 2.4. Proteins The microorganisms used included bacterial strains isolated from skin wounds at Hospital “Nicolás Avellaneda”, SIPROSA, Tucumán, Ar- Proteins were determined by the method of gentina. Gram negative bacteria: Escherichia coli Lowry et al. (1951) using bovine serum albumin (IEV301), Pseudomonas aeruginosa (IEV 305).
Recommended publications
  • Comparative Pollen Spectra of Tetragonisca Angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and Caatinga (NE Brazil) Jaílson S
    Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and caatinga (NE Brazil) Jaílson S. de Novais, Ana Cristina A. Garcêz, Maria Lúcia Absy, Francisco de Assis R. dos Santos To cite this version: Jaílson S. de Novais, Ana Cristina A. Garcêz, Maria Lúcia Absy, Francisco de Assis R. dos Santos. Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Ama- zon (N Brazil) and caatinga (NE Brazil). Apidologie, Springer Verlag, 2015, 46 (4), pp.417-431. 10.1007/s13592-014-0332-z. hal-01284456 HAL Id: hal-01284456 https://hal.archives-ouvertes.fr/hal-01284456 Submitted on 7 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2015) 46:417–431 Original article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0332-z Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and caatinga (NE Brazil) 1,2 1 2 Jaílson S. de NOVAIS , Ana Cristina A. GARCÊZ , Maria Lúcia ABSY , 3 Francisco de Assis R. dos SANTOS 1Centro de Formação Interdisciplinar and Laboratório de Botânica Taxonômica, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, Pará, Brazil 2Laboratório de Palinologia, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av.
    [Show full text]
  • Redalyc.Toxicity Evaluation of Two Insecticides on Tetragonisca
    Agronomía Colombiana ISSN: 0120-9965 [email protected] Universidad Nacional de Colombia Colombia Quiroga-Murcia, Daniel Estiven; Zotti, Moisés João; Zenner de Polanía, Ingeborg; Pech- Pech, Esdras Elías Toxicity evaluation of two insecticides on Tetragonisca angustula and Scaptotrigona xanthotricha (Hymenoptera: Apidae) Agronomía Colombiana, vol. 35, núm. 3, septiembre-diciembre, 2017, pp. 340-349 Universidad Nacional de Colombia Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=180357360009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Toxicity evaluation of two insecticides on Tetragonisca angustula and Scaptotrigona xanthotricha (Hymenoptera: Apidae) Evaluación de la toxicidad de dos insecticidas sobre Tetragonisca angustula y Scaptotrigona xanthotricha (Hymenoptera: Apidae) Daniel Estiven Quiroga-Murcia1*, Moisés João Zotti2, Ingeborg Zenner de Polanía3, and Esdras Elías Pech-Pech4 ABSTRACT RESUMEN Stingless bees (Hymenoptera: Apidae, Meliponini) have crucial Las abejas sin aguijón (Hymenoptera: Apidae, Meloponini) roles in the ecosystem, offering pollination service and contrib- hacen parte fundamental del ecosistema, ofreciendo el servi- uting to genetic diversity of species, and also providing honey cio de polinización y diversificación genética de las especies, and wax to humankind. Tetragonisca angustula and Scaptotri- además de proporcionar miel y cera para los seres humanos. gona xanthotricha are species that have been used since ancient Tetragonisca angustula y Scaptotrigona xanthotricha son es- times for beekeeping. Currently these and other species have pecies que han sido usadas en la meliponicultura por tiempos been exposed to agronomic practices, among which the use of ancestrales.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • Pollen Harvest by Africanized Apis Mellifera and Trigona Spinipes in São Paulo Botanical and Ecological Views M
    POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS M. Cortopassi-Laurino, M. Ramalho To cite this version: M. Cortopassi-Laurino, M. Ramalho. POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS. Apidolo- gie, Springer Verlag, 1988, 19 (1), pp.1-24. hal-00890725 HAL Id: hal-00890725 https://hal.archives-ouvertes.fr/hal-00890725 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS M. CORTOPASSI-LAURINO M. RAMALHO Departamento de Ecología Cera1 do lnstituto de Biociências da Universidade de São Paulo, 05508 São Paulo, Brasíl SUMMARY During one year, monthly samples of pollen were taken from one colony of Apis mellifera and one colony of Trigona spinipes. A great number of pollen types was observed in each of the samples (approximately 40), although few sources were intensively visited each month. T. spinipes collected significantly from Eucalyptus spp., Aloe sp. and Archontophoenix sp., and A. mellifera visited mainly Eucalyptus spp., Tipuana speciosa, Caesalpinia peltophoroides, Mikania glomerata and Cecropia sp.
    [Show full text]
  • Stingless Bee Nesting Biology David W
    Stingless bee nesting biology David W. Roubik To cite this version: David W. Roubik. Stingless bee nesting biology. Apidologie, Springer Verlag, 2006, 37 (2), pp.124-143. hal-00892207 HAL Id: hal-00892207 https://hal.archives-ouvertes.fr/hal-00892207 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 124–143 124 c INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006026 Review article Stingless bee nesting biology* David W. Ra,b a Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá b Unit 0948, APO AA 34002-0948, USA Received 2 October 2005 – Revised 29 November 2005 – Accepted 23 December 2005 Abstract – Stingless bees diverged since the Cretaceous, have 50 times more species than Apis,andare both distinctive and diverse. Nesting is capitulated by 30 variables but most do not define clades. Both architectural features and behavior decrease vulnerability, and large genera vary in nest habit, architecture and defense. Natural stingless bee colony density is 15 to 1500 km−2. Symbionts include mycophagic mites, collembolans, leiodid beetles, mutualist coccids, molds, and ricinuleid arachnids.
    [Show full text]
  • Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics the Latest Buzz in Bee Biology No
    Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 15, pp. 1–8 29 July 2013 Observations on the urban ecology of the Neotropical stingless bee Tetragonisca angustula (Hymenoptera: Apidae: Meliponini) Rita I. Velez-Ruiz1, Victor H. Gonzalez2,3, & Michael S. Engel3,4 Abstract. Tetragonisca angustula (Latreille) is a small, docile, cavity-nesting stingless bee that is widely distributed in the Neotropical region. This species is particularly abundant in disturbed environments, including human settlements. Between August 2005 and March 2006, we located and followed during eight months 59 nests of this species in Medellín, the second most popu- lated city in Colombia. Herein, we document their foraging behavior, mortality, and incidence of predators and natural enemies. Also, to determine if higher ambient temperature and light intensity in urban environments affect the daily foraging activity of T. angustula, we compared the daily foraging activity of bees from nests found in open areas in the city and bees from nests from a nearby covered, forested area. Likewise, to determine if urban nests of T. angustula are largely undetected and undisturbed by people, we experimentally made them visible by adding a ring color (white, red, or black) around the nest entrance tube. Our observations indicate that higher ambient temperature and light intensity in urban environments do not significantly af- fect the daily foraging activity of T. angustula. Nearly half of the marked nests disappeared, thus suggesting that nests of T. angustula are often undetected by people in Medellín. We discuss briefly some features of the biology of T.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • EFFECTS of BIOPESTICIDES in Tetragonisca Angustula LATREILLE (HYMENOPTERA: MELIPONINAE) POLLINATORS
    Effects of biopesticides in pollinators... OLIVEIRA, C. V. P. et al. 1 EFFECTS OF BIOPESTICIDES IN Tetragonisca angustula LATREILLE (HYMENOPTERA: MELIPONINAE) POLLINATORS Carlos Vinício Prescinato de Oliveira1 Adriana Aparecida Sinópolis Gigliolli1 Douglas Galhardo2 Daiani Rodrigues Moreira1 Ludimilla Ronqui3 Simone Aparecida Santos1 Vagner Alencar Arnault Toledo2 Maria Claudia Colla Ruvolo-Takasusuki1 OLIVEIRA, C. V. P.; GIGLIOLLI, A. A. S.; GALHARDO, D.; MOREIRA, D. R.; RONQUI, L.; SANTOS. S. A.; TOLEDO, V. A. A.; RUVOLO-TAKASUSUKI, M. C. C. Effects of biopesticides in pollinators Tetragonisca angustula Latreille (Hymenoptera: meliponinae). Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama, v. 23, n. 2cont., e2301, 2020. ABSTRACT: Stingless bees Tetragonisca angustula (Latreille) (Hymenoptera: Meliponinae) are pollinators of native and cultivated plants and are therefore in contact with areas contaminated by pesticides. These native bees were evaluated for changes in gene expression of esterase isoenzymes (EST) and peptides after contamination by contact with growth regulators from insecticides Gallaxy® EC 100, Natuneem and Azamax after 48, 120, 168 hours, 30 and 60 days. EST-4 presented an increase in relative activity after contamination with Gallaxy® EC 100 at 6.2 × 10-2 g a.i./mL; Natuneem at 7.5 × 10-5 g a.i./ mL; and Azamax at 1.2 × 10-3 g a.i/mL after 60 days, 48 h, and 60 days, respectively. Inhibition of the relative activity of EST-4 was detected after contamination by Natuneem at 1.5 × 10-5 g a.i./mL and Azamax at 1.2 × 10-3 g a.i./mL after 48 h and 30 days, respectively.
    [Show full text]
  • Hábitos De Coleta De Tetragon Isca Angustula Angustula Latreille. (Hymenoptera, Apidae, Meliponinae)*
    Bolm. Zool. Univ. S. Paulo 8:115-131, 1984 HÁBITOS DE COLETA DE TETRAGON ISCA ANGUSTULA ANGUSTULA LATREILLE. (HYMENOPTERA, APIDAE, MELIPONINAE)* VERA LUCIA IMPERATRIZ-FONSECA ASTRID KLEINERT-GIOVANNINI MARILDA CORTOPASSI-LAURINO MAURO RAMALHO Departamento de Ecologia Geral-Instituto de Biociências-Universidade de São Paulo CEP 05499 - (recebido em 08.XII.1983) RESUMO - Durante um ano foram coletadas amostras de pólen e mel de colonias de Tetragonisoa angus tuia angustula Latrei - lie. Essas abelhas visitaram 180 espécies vegetais, perten - centes a 45 famílias diferentes, para coleta de alimento. Fo ram encontrados 140 tipos polínicos nas amostras de pólen e 158 nas amostras de mel. As espécies de plantas mais procura das tanto para coleta de pólen como de néctar, variando so ~ mente a ordem de preferência, foram: Alchornea sidaefolia , Cecropia sp, Eucalyptus spp e Mimosa daleoides. A família bo tânica mais procurada para coleta de pólen foi Euphorbiaceae, seguida de Moraceae, Leguminosae e Myrtaceae. Para coleta de nectar, as mesmas famílias foram também as mais visitadas,va riando no grau de preferência: Myrtaceae, Euphorbiaceae, Le­ guminosae e Moraceae. ABSTRACT - During one year, pollen and honey samples from Tetragonisoa angustula angustula Latreille colonies have been collected. These bees have visited 180 botanic species, belonging to 45 different families. It has been found 140 pollinic types in pollen samples and 158 in honey samples The most visited plant species, either to pollen and nectar rewards, varying only on the preference order, were: Alchor­ nea sidaefolia, Cecropia sp, Eucalyptus spp and Mimosa da leoides. The most visited botanic family for pollen gathe - ring was Euphorbiaceae followed by Moraceae, Leguminosae and Myrtaceae.
    [Show full text]
  • Observations on the Urban Ecology of the Neotropical Stingless Bee Tetragonisca Angustula (Hymenoptera: Apidae: Meliponini)
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Observations on the urban ecology of the Neotropical stingless bee Tetragonisca angustula (Hymenoptera: Apidae: Meliponini). by Velez-Ruiz, Victor Gonzalez, and Michael Engel 2013 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Engel, Michael S. (2013). Observations on the urban ecology of the Neotropical stingless bee Tetragonisca angustula (Hymenoptera: Apidae: Meliponini). Journal of Melittology 15:41647. Published version: https://journals.ku.edu/index.php/melittology/ article/view/4528 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 15, pp. 1–8 29 July 2013 Observations on the urban ecology of the Neotropical stingless bee Tetragonisca angustula (Hymenoptera: Apidae: Meliponini) Rita I. Velez-Ruiz1, Victor H. Gonzalez2,3, & Michael S. Engel3,4 Abstract. Tetragonisca angustula (Latreille) is a small, docile, cavity-nesting stingless bee that is widely distributed in the Neotropical region. This species is particularly abundant in disturbed environments, including human settlements. Between August 2005 and March 2006, we located and followed during eight months 59 nests of this species in Medellín, the second most popu- lated city in Colombia. Herein, we document their foraging behavior, mortality, and incidence of predators and natural enemies. Also, to determine if higher ambient temperature and light intensity in urban environments affect the daily foraging activity of T.
    [Show full text]
  • Native Bee Flashcards
    Blue-Banded Bee This bee has blue and black stripes on its abdomen and is a solitary bee, which means it likes to travel around and live on its own. Teddy Bear Bee This bee has the name of Teddy Bear Bee because it is a bit chubby and is covered in a brown, fluffy fur! They build burrows in soil to use as their nests. (Image source: https://commons.wikimedia.org/wiki/File:Big_Ol_Teddy_Bear_Bee.jpg) Carpenter Bee This is a female Carpenter Bee. The males have quite different colouring, they still have a metallic sheen but are more yellowy-green. When building its nest the female bee will cut nest burrows into the flower spikes of grass trees or other soft timbers. Stingless Bee This is a Stingless Bee, which means these bees don’t have a sting. They also produce honey. There are 11 species of Stingless Bees in Australia. Resin Bee Resin Bees get their name because they build their houses out of resin (like the sap from trees). They come in a range of colours, including red, orange and black. Lasioglossum Bees There are over 250 species of Lasioglossum Bees in Australia. The female Lasioglossum Bees can carry large amounts of pollen on their furry bodies and legs. Females usually work alone to create their nests in burrows in the ground, although sometimes a group of females may share a nest. Leafcutter Bee The amazing Leafcutter Bee cuts out a neat circle or oval from a leaf and uses these leaf pieces to weave little cradles for her eggs to rest in inside her burrow nest.
    [Show full text]