Emerging Epigenetic Therapeutics for Myeloid Leukemia: Modulating

Total Page:16

File Type:pdf, Size:1020Kb

Emerging Epigenetic Therapeutics for Myeloid Leukemia: Modulating REVIEW ARTICLE Emerging epigenetic therapeutics for myeloid Ferrata Storti Foundation leukemia: modulating demethylase activity with ascorbate Andrew B. Das, Carlos C. Smith-Díaz and Margreet C.M. Vissers Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand Haematologica 2021 ABSTRACT Volume 106(1):14-25 he past decade has seen a proliferation of drugs that target epige - netic pathways. Many of these drugs were developed to treat Tacute myeloid leukemia, a condition in which dysregulation of the epigenetic landscape is well established. While these drugs have shown promise, critical issues persist. Specifically, patients with the same mutations respond quite differently to treatment. This is true even with highly specific drugs that are designed to target the underlying oncogenic driver mutations. Furthermore, patients who do respond may eventually develop resistance. There is now evidence that epigenetic heterogeneity contributes, in part, to these issues. Cancer cells also have a remarkable capacity to ‘rewire’ themselves at the epigenetic level in response to drug treatment, and thereby maintain expression of key oncogenes. This epigenetic plasticity is a promising new target for drug development. It is therefore important to consider combination therapy in cases in which both driver mutations and epigenetic plasticity are tar - geted. Using ascorbate as an example of an emerging epigenetic thera - peutic, we review the evidence for its potential use in both of these modes. We provide an overview of 2-oxoglutarate dependent dioxyge - nases with DNA, histone and RNA demethylase activity, focusing on those which require ascorbate as a cofactor. We also evaluate their role in the development and maintenance of acute myeloid leukemia. Using this information, we highlight situations in which the use of ascorbate Correspondence: to restore 2-oxoglutarate dependent dioxygenase activity could prove ANDREW B. DAS beneficial, in contrast to contexts in which targeted inhibition of specific [email protected] enzymes might be preferred. Finally, we discuss how these insights could be incorporated into the rational design of future clinical trials. Received: June 26, 2020. Accepted: September 17, 2020. Introduction Pre-published: October 22, 2020. Acute myeloid leukemia (AML) is a cancer that arises from the stem and progen - itor cells of the hematopoietic system. These abnormally differentiated, clonal cells https://doi.org/10.3324/haematol.2020.259283 infiltrate the bone marrow, blood and other tissues. Unless treatment is initiated early, the rapid onset of this proliferative disease is fatal. Over the past 50 years there have been remarkable improvements in the treatment of AML. Initially incur - ©2021 Ferrata Storti Foundation able, the 5-year survival for young patients (<60 years old) is now greater than Material published in Haematologica is covered by copyright. 50%. 1 This progress was initiated in the 1970s when the effectiveness of cytarabine All rights are reserved to the Ferrata Storti Foundation. Use of and anthracyclines was discovered. Subsequently, various regimens involving com - published material is allowed under the following terms and conditions: binations of the two drugs were studied to find the optimum dose, with bone mar - https://creativecommons.org/licenses/by-nc/4.0/legalcode. row transplants introduced as an option in 1977. Prognosis has been even better for Copies of published material are allowed for personal or inter - acute promyelocytic leukemia, a subset of AML in which the use of all- trans nal use. Sharing published material for non-commercial pur - retinoic acid (ATRA) and arsenic trioxide has increased 5-year survival to 90%. poses is subject to the following conditions: https://creativecommons.org/licenses/by-nc/4.0/legalcode, However, for older patients, for whom intensive chemotherapy is not an option, 2 sect. 3. Reproducing and sharing published material for com - outcomes remain bleak with a median survival of 5-11 months. Clearly, more mercial purposes is not allowed without permission in writing effective treatments for AML are needed, with important clinical questions remain - from the publisher. ing, including why is there a variable response to drug therapy, and why do some patients develop resistance to therapy? When considering new treatments for AML, it is important to first evaluate our current understanding of the contributing 14 haematologica | 2021; 106(1) Emerging epigenetic therapeutics for AML Figure 1. Levels of heterogeneity in acute myeloid leukemia and potential treatment strategies to address them. See text for further details. variables. This will help to frame current and emerging mutational burden is low in AML compared to other can - treatment strategies for AML (Figure 1), and provide a cers, and that proteins involved in epigenetic processes are framework for considering ascorbate as an epigenetic ther - early drivers of the cancer phenotype. 6,10 This information apeutic. is of particular interest because the reversibility of epige - netic modifications makes these processes, and the pro - Genetic heterogeneity in acute myeloid leukemia teins that mediate them, attractive drug targets. 11-13 These As evidenced by the variable response to chemotherapy, data have also highlighted the potential for precision med - AML is a heterogeneous disease. As the technologies icine, where treatments can be matched to the patient on available to investigate AML have developed, our under - a case-by-case basis. In the past 5 years, selective standing of where this heterogeneity lies has expanded. inhibitors for mutations in FLT3 ,14 IDH1 15 and IDH2 16 have Morphological and cytogenetic heterogeneity have been gained approval from the Food and Drug Administration. studied for over 30 years and formed the basis for the There are also a growing number of clinical trials for drugs French-Amercian-British classification system. 3 As genetic targeting epigenetic writers (DOT1L, PRMT5), readers sequencing technologies improved, frequently mutated (BRD2/3/4) and erasers (HDAC, LSD1). 13 However, the genes were added to classification and prognostic predic - major difficulties with targeted therapy to date, epigenetic tion by the World Health Organization 4 and European or otherwise, are familiar adversaries: variable response to LeukemiaNet. 5 To date, next-generation sequencing tech - the drug, and drug resistance. At first glance this seems to nologies have shed the greatest light on heterogeneity in be a repetition of the same issues experienced with AML. In 2016, a landmark study that sequenced DNA chemotherapy. However, the nuance here is that patients samples from more than 1,540 AML patients found recur - with the same mutations respond quite differently to rent mutations in over 100 genes. 6 Combining this infor - treatment. This is reported even with highly specific drugs mation with cytogenetic and clinical data has shown that that are designed to target the common oncogenic driver AML comprises at least 11 different subgroups with prog - mutation. 15,17 By uncovering deeper layers of heterogeneity nostic relevance. 6,7 Therefore, substantial heterogeneity in in AML, this obstacle has provided an indication as to molecular pathology underpins the apparently homoge - how it may be overcome. nous phenotype of patients presenting in the clinic. Single- cell sequencing has added another layer of complexity to Epigenetic heterogeneity, plasticity and drug this scenario: multiple AML clones may exist in the same resistance patient with their relative proportions changing over time We have highlighted two reasons why patients respond with treatment and relapse, 8,9 with different co-occurring quite differently to treatment; inter-patient heterogeneity mutations contributing to different clinical outcomes. 6,7 (genetic) and intra-patient heterogeneity (genetic/clonal). A further insight emerging from large studies using However, these factors alone do not explain why some next-generation sequencing to investigate AML is that the patients eventually develop resistance to a targeted drug. haematologica | 2021; 106(1) 15 A.B. Das et al. The most commonly proffered reason is that the develop - OGDD utilize non-heme iron (Fe 2+ ), 2-oxoglutarate and ment of new mutations confers a survival advantage. 15,18 oxygen to catalyze a wide range of hydroxylation reac - This can be due the founding clone in the primary tumor tions. Many enzymes function as DNA, histone and RNA gaining mutations and evolving into the relapse clone, or demethylases and have been shown to require ascorbate a subclone of the founding clone surviving initial therapy, to maintain optimal activity (Table 1). This biochemistry gaining additional mutations and expanding at relapse. 19 underpins ascorbate’s link to epigenetics and has received However, there is growing evidence that non-genetic increasing attention in multiple contexts including can - resistance also plays a role. 20 Two key variables that con - cer. 32,33 The findings are particularly relevant for AML tribute towards this outcome are epigenetic heterogeneity because many of these demethylase enzymes are involved and epigenetic plasticity. in the development and maintenance of AML (Table 1). Of Epigenetic heterogeneity refers to the different epige - the 20 OGDD enzymes with demethylase activity listed netic states across a population of genetically identical in Table 1, 17 play a role in the development
Recommended publications
  • Synergistic Interplay Between PHF8 and HER2 Signaling Contributes to Breast Cancer Development and Drug Resistance
    bioRxiv preprint doi: https://doi.org/10.1101/682476; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Synergistic interplay between PHF8 and HER2 signaling contributes to breast cancer development and drug resistance Qi Liu1, Nicholas Borcherding2, Peng Shao1,3, Peterson Kariuki Maina1,4, Weizhou Zhang5, and Hank Heng Qi1,6 1 Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 2 Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 3 Current address: Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 4 Current Address: Albert Einstein College of Medicine, Bronx, NY 10461, USA 5 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610-0275, USA 6 To whom correspondence should be addressed. Tel: 1-319-335-3084; Fax: 1-319-335-7198; Email: [email protected] Key words: PHF8, HER2, IL-6, breast cancer, drug resistance 1 bioRxiv preprint doi: https://doi.org/10.1101/682476; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract HER2 plays a critical role in tumorigenesis and is associated with poor prognosis of HER2- positive breast cancers. Although, anti-HER2 drugs show benefits in breast cancer therapy, de novo or acquired resistance often develop.
    [Show full text]
  • Investigation of Histone Lysine-Specific Demethylase 5D
    FULL LENGTH Iranian Biomedical Journal 20(2): 117-121 April 2016 Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach Zohreh Jangravi1, 2, Mohammad Najafi1,3 and Mohammd Shabani*1 1Dept. of Biochemistry, Iran University of Medical Sciences, Tehran, Iran; 2Dept. of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; 3Dept. of Biochemistry, Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran Received 2 September 2014; revised 3 December 2014; accepted 7 December 2014 ABSTRACT Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active gene. In this light, the aim of this study was to investigate isoform/transcript-specific expression profiles of KDM5D in three prostate cancer cell lines, Du-145, LNCaP, and PC3. Methods: Real-time PCR analysis was performed to determine the expression levels of different KDM5D transcripts in the prostate cell lines. A gene regulatory network was established to analyze the gene expression profile. Results: Significantly different expression levels of both isoforms were found among the three cell lines. Interestingly, isoform I was expressed in three cell lines while isoform III did only in DU-145. The expression levels of both isoforms were higher in DU-145 when compared to other cell lines (P<0.0001).
    [Show full text]
  • KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations Xiaoni Liu1,2, Shang-Min Zhang1, Meaghan K
    Published OnlineFirst December 6, 2018; DOI: 10.1158/1535-7163.MCT-18-0395 Cancer Biology and Translational Studies Molecular Cancer Therapeutics KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations Xiaoni Liu1,2, Shang-Min Zhang1, Meaghan K. McGeary1,2, Irina Krykbaeva1,2, Ling Lai3, Daniel J. Jansen4, Stephen C. Kales4, Anton Simeonov4, Matthew D. Hall4, Daniel P. Kelly3, Marcus W. Bosenberg1,2,5, and Qin Yan1 Abstract Tumor heterogeneity is a major challenge for cancer elevated KDM5B expression, melanoma cells shift toward a À treatment, especially due to the presence of various sub- more drug-tolerant, CD34 state upon exposure to BRAF populations with stem cell or progenitor cell properties. inhibitor or combined BRAF inhibitor and MEK inhibitor þ À þ In mouse melanomas, both CD34 p75 (CD34 )and treatment. KDM5B loss or inhibition shifts melanoma cells À À À þ CD34 p75 (CD34 ) tumor subpopulations were charac- to the more BRAF inhibitor–sensitive CD34 state. These terized as melanoma-propagating cells (MPC) that exhibit results support that KDM5B is a critical epigenetic regulator some of those key features. However, these two subpopula- that governs the transition of key MPC subpopulations tions differ from each other in tumorigenic potential, with distinct drug sensitivity. This study also emphasizes ability to recapitulate heterogeneity, and chemoresistance. the importance of continuing to advance our understand- þ À In this study, we demonstrate that CD34 and CD34 ing of intratumor heterogeneity and ultimately develop V600E subpopulations carrying the BRAF mutation confer novel therapeutics by altering the heterogeneous character- differential sensitivity to targeted BRAF inhibition.
    [Show full text]
  • Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B
    molecules Article Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B Simone Pippa 1, Cecilia Mannironi 2, Valerio Licursi 1,3, Luca Bombardi 1, Gianni Colotti 2, Enrico Cundari 2, Adriano Mollica 4, Antonio Coluccia 5 , Valentina Naccarato 5, Giuseppe La Regina 5 , Romano Silvestri 5 and Rodolfo Negri 1,2,* 1 Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (S.P.); [email protected] (V.L.); [email protected] (L.B.) 2 Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy; [email protected] (C.M.); [email protected] (G.C.); [email protected] (E.C.) 3 Institute for Systems Analysis and Computer Science “A. Ruberti”, Italian National Research Council, 00185 Rome, Italy 4 Department of Pharmacy, University “G. d’ Annunzio” of Chieti, Via dei Vestini 31, 66100 Chieti, Italy; [email protected] 5 Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (A.C.); [email protected] (V.N.); [email protected] (G.L.R.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +39-06-4991-7790 Academic Editors: Sergio Valente and Diego Muñoz-Torrero Received: 12 October 2018; Accepted: 1 May 2019; Published: 4 May 2019 Abstract: Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance.
    [Show full text]
  • Lanosterol 14Α-Demethylase (CYP51)
    463 Lanosterol 14-demethylase (CYP51), NADPH–cytochrome P450 reductase and squalene synthase in spermatogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol G Majdicˇ, M Parvinen1, A Bellamine2, H J Harwood Jr3, WWKu3, M R Waterman2 and D Rozman4 Veterinary Faculty, Clinic of Reproduction, Cesta v Mestni log 47a, 1000 Ljubljana, Slovenia 1Institute of Biomedicine, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland 2Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232–0146, USA 3Pfizer Central Research, Department of Metabolic Diseases, Box No. 0438, Eastern Point Road, Groton, Connecticut 06340, USA 4Institute of Biochemistry, Medical Center for Molecular Biology, Medical Faculty University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia (Requests for offprints should be addressed to D Rozman; Email: [email protected]) (G Majdicˇ is now at Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75235–8857, USA) Abstract Lanosterol 14-demethylase (CYP51) is a cytochrome detected in step 3–19 spermatids, with large amounts in P450 enzyme involved primarily in cholesterol biosynthe- the cytoplasm/residual bodies of step 19 spermatids, where sis. CYP51 in the presence of NADPH–cytochrome P450 P450 reductase was also observed. Squalene synthase was reductase converts lanosterol to follicular fluid meiosis immunodetected in step 2–15 spermatids of the rat, activating sterol (FF-MAS), an intermediate of cholesterol indicating that squalene synthase and CYP51 proteins are biosynthesis which accumulates in gonads and has an not equally expressed in same stages of spermatogenesis. additional function as oocyte meiosis-activating substance.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • Imidazopyridines As Potent KDM5 Demethylase Inhibitors Promoting Reprogramming Efficiency of Human Ipscs
    Article Imidazopyridines as Potent KDM5 Demethylase Inhibitors Promoting Reprogramming Efficiency of Human iPSCs Yasamin Dabiri, Rodrigo A. Gama- Brambila, Katerina Taskova, ..., Jichang Wang, Miguel A. Andrade-Navarro, Xinlai Cheng [email protected] HIGHLIGHTS O4I3 supports the maintenance and generation of human iPSCs O4I3 is a potent H3K4 demethylase KDM5 inhibitor in vitro and in cells KDM5A, but not KDM5B, serves as an epigenetic barrier of reprogramming Chemical or genetic inhibition of KDM5A tends to promote the reprogramming efficiency Dabiri et al., iScience 12,168– 181 February 22, 2019 ª 2019 The Author(s). https://doi.org/10.1016/ j.isci.2019.01.012 Article Imidazopyridines as Potent KDM5 Demethylase Inhibitors Promoting Reprogramming Efficiency of Human iPSCs Yasamin Dabiri,1 Rodrigo A. Gama-Brambila,1 Katerina Taskova,2,3 Kristina Herold,4 Stefanie Reuter,4 James Adjaye,5 Jochen Utikal,6 Ralf Mrowka,4 Jichang Wang,7 Miguel A. Andrade-Navarro,2,3 and Xinlai Cheng1,8,* SUMMARY Pioneering human induced pluripotent stem cell (iPSC)-based pre-clinical studies have raised safety concerns and pinpointed the need for safer and more efficient approaches to generate and maintain patient-specific iPSCs. One approach is searching for compounds that influence pluripotent stem cell reprogramming using functional screens of known drugs. Our high-throughput screening of drug-like hits showed that imidazopyridines—analogs of zolpidem, a sedative-hypnotic drug—are able to improve reprogramming efficiency and facilitate reprogramming of resistant human primary fibro- blasts. The lead compound (O4I3) showed a remarkable OCT4 induction, which at least in part is 1Institute of Pharmacy and due to the inhibition of H3K4 demethylase (KDM5, also known as JARID1).
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
    G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Mutations in PHF8 Are Associated with X Linked Mental Retardation And
    780 J Med Genet: first published as 10.1136/jmg.2004.029439 on 30 September 2005. Downloaded from LETTER TO JMG Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate F Laumonnier*, S Holbert*, N Ronce, F Faravelli, S Lenzner, C E Schwartz, J Lespinasse, H Van Esch, D Lacombe, C Goizet, F Phan-Dinh Tuy, H van Bokhoven, J-P Fryns, J Chelly, H-H Ropers, C Moraine, B C J Hamel, S Briault ............................................................................................................................... J Med Genet 2005;42:780–786. doi: 10.1136/jmg.2004.029439 lymphoblastoid cell lines (family N42) that were established Truncating mutations were found in the PHF8 gene (encoding from peripheral lymphocytes using standard protocols. the PHD finger protein 8) in two unrelated families with X linked mental retardation (XLMR) associated with cleft lip/ palate (MIM 300263). Expression studies showed that this Fluorescence in situ hybridisation (FISH) BACs on chromosome Xp11.21 were selected from Ensembl gene is ubiquitously transcribed, with strong expression of database (http://www.ensembl.org) and the UCSC genome the mouse orthologue Phf8 in embryonic and adult brain browser (http://genome.ucsc.edu) and obtained from the structures. The coded PHF8 protein harbours two functional CHORI Institute (http://bacpac.chori.org). Hybridisation domains, a PHD finger and a JmjC (Jumonji-like C terminus) experiments were carried out as previously described.12 domain, implicating it in transcriptional regulation and chromatin remodelling. The association of XLMR and cleft lip/palate in these patients with mutations in PHF8 suggests Mutation analysis of PHF8 Polymerase chain reaction (PCR) was carried out in 50 ml an important function of PHF8 in midline formation and in the reaction volumes containing 100 ng of genomic DNA from development of cognitive abilities, and links this gene to the patients, 10 pM of each primer, 1.25 mM of dNTPs, 0.5 U XLMR associated with cleft lip/palate.
    [Show full text]