HDB-DOS User Manual © 2003 Boisy G

Total Page:16

File Type:pdf, Size:1020Kb

HDB-DOS User Manual © 2003 Boisy G HDB-DOS 1.1 User Manual Manual Revision 1.2 - May 9, 2002 Cloud-9 Cloud-9 Cloud-9 3749 County Road 30 Delano, MN 55328 Cloud-9 3749 County Road 30 Telephone 763.972.3261 Delano, MN 55328 www.cloud9tech.com Telephone 763.972.3261 www.cloud9tech.com 56 HDB-DOS © 2003 Boisy G. Pitre Licensed to Cloud-9 All Rights Reserved All portions of this software are copyright and are the proprietary and trade secret information of Boisy G. Pitre and/or his licensor. Use, reproduction or publication of any portion of this material without the prior written authorization of Boisy G. Pitre is strictly prohibited. HDB-DOS User Manual © 2003 Boisy G. Pitre All Rights Reserved Reproduction or use of any portion of this manual, without express written permission from Boisy G. Pitre and/or his licensor, is prohibited. While reasonable efforts have been made in the preparation of this manual to assure its accuracy, neither Boisy G. Pitre nor his licensor assume liability resulting from any errors in or omissions from this manual, or from the use of the information contained herein. 2 55 Table Of Contents HDB-DOS 1.1 .......................................................................1 User Manual .....................................................................1 1. Congratulations! ...........................................................5 Features............................................................................6 Fixes And Additions ..........................................................6 2. Choosing A Hard Drive.................................................7 Sector Sizes......................................................................7 Virtual Floppy Disks ..........................................................7 Putting It Together ............................................................8 3. Using the HDB-DOS Wizard.......................................10 4. EPROM Installation ....................................................11 5. Hard Drive Setup ........................................................14 6. Special Features.........................................................18 Auto Execution Feature ..................................................18 FLEXIKEY - Last Line Recall & Edit................................19 7. Commands Reference................................................22 8. Detailed Command Summary.....................................24 COMMAND: BACKUP ....................................................24 SYNTAX and USAGE:................................................24 COMMAND: COPY.........................................................25 SYNTAX and USAGE:................................................25 COMMAND: DIR.............................................................27 SYNTAX and USAGE:................................................27 COMMAND: DOS ...........................................................28 SYNTAX and USAGE:................................................28 COMMAND: DRIVE........................................................30 SYNTAX and USAGE:................................................30 COMMAND: DSKINI.......................................................32 SYNTAX and USAGE:................................................32 COMMAND: RENAME....................................................34 SYNTAX and USAGE:................................................34 COMMAND: RUN, RUNM ..............................................36 9. Technical Information .................................................38 $D930 (DISKIO) - Universal Hard Disk I/O Routine........38 54 3 $D932 (SETUP) - Setup a CDB in RAM starting at VCMD ........................................................................................39 $D934 (BEEP) - Used to generate a "BEEP" tone..........39 $D936 (DSKCON) - DSKCON Re-entry point..............39 $D938 (OS9HI) - OS-9 sector offset, HI BYTE. ..............39 $D939 (OS9LO) - OS-9 sector offset, LO WORD...........39 $D93B (PORTHI) – Port Address, HI BYTE. ..................40 $D93C (PORTLO) – Port Address, LO BYTE.................40 $D93D (TIMOUT) – Timeout Value. ...............................40 $D93E (DEFID) – Default SCSI/IDE ID...........................40 RAM Variables................................................................40 10. HDB-DOS Utilities ....................................................43 WIZARD.BAS .................................................................43 LINK.BAS........................................................................43 DSK2DSK.BAS...............................................................43 FINDFILE.BAS................................................................44 ERRMSG.BIN, ERRMSG.SRC.......................................44 RAMDISK.BIN, RAMDISK.ASM .....................................44 TWPATCH.BAS, TWPATCH.BIN, TWPATCH.ASM.......44 FIX 128.BAS ...................................................................44 FMTALL.BAS..................................................................44 11. OS-9 and HDB-DOS ................................................45 HDB-DOS Offset Feature ...............................................45 Example......................................................................46 “No Floppy” OS-9 Boot ...................................................47 12. SCSI Notes ..............................................................49 Supported SCSI Controllers............................................49 13. IDE Notes.................................................................50 Supported IDE Interfaces................................................50 ATA-2 vs. ATAPI.............................................................51 C/H/S vs. LBA Mode.......................................................51 14. Support.....................................................................52 4 53 14. Support 1. Congratulations! At Cloud-9, we take pride in offering products that will be Thank you for purchasing HDB-DOS, another one of the fine easy to configure and use. Although our products are products offered by Cloud-9. This product was designed to engineered with quality and care, we cannot guarantee that be used with the Radio Shack TRS-80 Color Computers 1, you won’t run into problems. 2, and the Tandy Color Computer 3. If you have a problem or question, please contact us via the HDB-DOS (Hard Disk BASIC Disk Operating System) Internet at [email protected]. You can also visit our started out in 1986 as RGB-DOS, a ground-breaking product website at http://www.cloud9tech.com for up-to-date of Roger Krupski and RGB COMPUTER SYSTEMS. It was information on your product. paired with the fine SCSI controller from Ken-Ton Electronics, and versions were also available for other hard drive controllers. With the introduction of the TC^3 SCSI controller from Cloud-9, renewed interest in RGB-DOS began to appear. In 2002, Boisy Pitre acquired all rights to the product from Ken- Ton and now licenses the product exclusively to Cloud-9 as HDB-DOS. HDB-DOS is reliable and easy to learn, but you have to KNOW HOW TO USE IT if you expect maximum performance. We suggest that some time be spent reading the User Manual before attempting to use HDB-DOS with your hard drive system. Over the years, several people have spent long hours at the keyboard writing the software and the User Manual, so please spend a few minutes and read the manual first. It will save you time, money and frustration. HDB-DOS contains the best ideas of many CoCo enthusiasts. Countless ideas were given and countless 52 5 suggestions made. Some ideas were great, and became ATA-2 vs. ATAPI part of HDB-DOS. Most ideas were rejected for technical HDB-DOS supports ATA-2 compliant devices only. ATAPI reasons. Although we feel HDB-DOS is a fine product, we devices such as CD-ROMs and ZIP drives will not work with never consider it "finished". There is always something that HDB-DOS. can be improved. If you have an idea, comment or suggestion, please pass it along to us. C/H/S vs. LBA Mode Features HDB-DOS supports both LBA (Logical Block Address) mode and C/H/S (Cylinder/Head/Sector) mode. Both are standard • Allows access to modern SCSI and IDE hard drives methods of accessing data on IDE drives. under BASIC. • Can address up to 8 SCSI devices or 2 IDE devices. C/H/S mode is widely used in IDE hard drives of many sizes • Up to 256 “virtual floppy” disks can be accessed. and models; therefore, it offers the most compatibility. While • Works flawlessly with Cloud-9’s TC^3 SCSI Controller using C/H/S mode does add some overhead when and SuperIDE Interface. processing each read/write, it insures the greatest • Also supports Disto and Ken-Ton SCSI controllers, compatibility with a wide range of IDE drives. and the Glenside IDE interface. Unlike C/H/S mode, the LBA mode is a more direct approach Fixes And Additions to accessing a hard drive’s sectors, and requires very little overhead, but is usually supported on drives of larger (> Version 1.1 of HDB-DOS includes the following fixes and 2GB) capacity or CompactFlash. additions: Depending upon your hard drive setup, you should select Cloud-9’s SuperIDE controller is now supported. either the C/H/S or LBA mode when configuring HDB-DOS. LBA mode support for IDE drives has been added. LBA mode is recommended since it is faster; however, if you Several bugs, which affected compatibility with have older or smaller IDE drives, C/H/S is probably the only certain SCSI and IDE drives, have been fixed. mode that will work. The
Recommended publications
  • Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera
    INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera STORAGE SYSTEMS AND TECHNOLOGIES Jai Menon IBM Academy of Technology, San Jose, CA, USA Clodoaldo Barrera IBM Systems Group, San Jose, CA, USA Keywords: Storage Systems, Hard disk drives, Tape Drives, Optical Drives, RAID, Storage Area Networks, Backup, Archive, Network Attached Storage, Copy Services, Disk Caching, Fiber Channel, Storage Switch, Storage Controllers, Disk subsystems, Information Lifecycle Management, NFS, CIFS, Storage Class Memories, Phase Change Memory, Flash Memory, SCSI, Caching, Non-Volatile Memory, Remote Copy, Storage Virtualization, Data De-duplication, File Systems, Archival Storage, Storage Software, Holographic Storage, Storage Class Memory, Long-Term data preservation Contents 1. Introduction 2. Storage devices 2.1. Storage Device Industry Overview 2.2. Hard Disk Drives 2.3. Digital Tape Drives 2.4. Optical Storage 2.5. Emerging Storage Technologies 2.5.1. Holographic Storage 2.5.2. Flash Storage 2.5.3. Storage Class Memories 3. Block Storage Systems 3.1. Storage System Functions – Current 3.2. Storage System Functions - Emerging 4. File and Archive Storage Systems 4.1. Network Attached Storage 4.2. Archive Storage Systems 5. Storage Networks 5.1. SAN Fabrics 5.2. IP FabricsUNESCO – EOLSS 5.3. Converged Networking 6. Storage SoftwareSAMPLE CHAPTERS 6.1. Data Backup 6.2. Data Archive 6.3. Information Lifecycle Management 6.4. Disaster Protection 7. Concluding Remarks Acknowledgements Glossary Bibliography Biographical Sketches ©Encyclopedia of Life Support Systems (EOLSS) INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera Summary Our world is increasingly becoming a data-centric world.
    [Show full text]
  • Use External Storage Devices Like Pen Drives, Cds, and Dvds
    External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port.
    [Show full text]
  • Control Design and Implementation of Hard Disk Drive Servos by Jianbin
    Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roberto Horowitz, Chair Professor Masayoshi Tomizuka Professor David Brillinger Spring 2011 Control Design and Implementation of Hard Disk Drive Servos ⃝c 2011 by Jianbin Nie 1 Abstract Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor Roberto Horowitz, Chair In this dissertation, the design of servo control algorithms is investigated to produce high-density and cost-effective hard disk drives (HDDs). In order to sustain the continuing increase of HDD data storage density, dual-stage actuator servo systems using a secondary micro-actuator have been developed to improve the precision of read/write head positioning control by increasing their servo bandwidth. In this dissertation, the modeling and control design of dual-stage track-following servos are considered. Specifically, two track-following control algorithms for dual-stage HDDs are developed. The designed controllers were implemented and evaluated on a disk drive with a PZT-actuated suspension-based dual-stage servo system. Usually, the feedback position error signal (PES) in HDDs is sampled on some spec- ified servo sectors with an equidistant sampling interval, which implies that HDD servo systems with a regular sampling rate can be modeled as linear time-invariant (LTI) systems. However, sampling intervals for HDD servo systems are not always equidistant and, sometimes, an irregular sampling rate due to missing PES sampling data is unavoidable.
    [Show full text]
  • Manufacturing Equipment Technologies for Hard Disk's
    Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits 222 Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits Kyoichi Mori OVERVIEW: To meet the world’s growing demands for volume information, Brian Rattray not just with computers but digitalization and video etc. the HDD must Yuichi Matsui, Dr. Eng. continually increase its capacity and meet expectations for reduced power consumption and green IT. Up until now the HDD has undergone many innovative technological developments to achieve higher recording densities. To continue this increase, innovative new technology is again required and is currently being developed at a brisk pace. The key components for areal density improvements, the disk and head, require high levels of performance and reliability from production and inspection equipment for efficient manufacturing and stable quality assurance. To meet this demand, high frequency electronics, servo positioning and optical inspection technology is being developed and equipment provided. Hitachi High-Technologies Corporation is doing its part to meet market needs for increased production and the adoption of next-generation technology by developing the technology and providing disk and head manufacturing/inspection equipment (see Fig. 1). INTRODUCTION higher efficiency storage, namely higher density HDDS (hard disk drives) have long relied on the HDDs will play a major role. computer market for growth but in recent years To increase density, the performance and quality of there has been a shift towards cloud computing and the HDD’s key components, disks (media) and heads consumer electronics etc. along with a rapid expansion have most effect. Therefore further technological of data storage applications (see Fig.
    [Show full text]
  • The Magnetic Hard Disk Drive
    The Magnetic Hard Disk Drive Today’s Technical Status And Future Dr. Edward Grochowski Dr. Peter Goglia Memory/Storage Consultant Vice President – Plasma Therm [email protected] [email protected] SNIA Data Storage (DSC) Conference September 19-22, 2016 Santa Clara Hyatt Santa Clara, CA 1 Subjects To Be Addressed • History • Present HDD Market • Future HDD Bytes Shipped • Cloud Computing and HDD Design • Today’s HDD Products and Future Trends • HDD Performance Trend • HDD Cost Analysis • HDD Reliability/Endurance • HDD Technology: Shingle Write, Helium Ambient, Form Factor/Disk Count • Future Technology: HAMR, 2DMR, BPM • Materials: Heads, Media • Competitive Storage Technologies: Flash, NVM • Summary and Conclusions 2 3 HDD Exabyte Curve From Multiple Sources 1E+121024 1023 1E+11 HDD Exabyte Curve tes From Multiple Sources 1022 1E+10 Ed Grochowski 1E+91021 HDD 1E+81020 1E+7 10 19 1E+61018 Bytes Shipped/Year 1017 1E+5 1E+4 10 16 Petabytes Exabytes Zetaby Exabytes Petabytes 1E+31015 88 92 96 2000100 104 04 108 08 112 12 116 16 120 20 Production Year 4 TB2020B.PRZ Number of Disk Media Grains, Grain Diam. Write Head Field Limit Magnetic Coercive Field, Volume of Media Grain 5 Heat Activated Magnetic Recording (HAMR) Source: Seagate Technology Corp. Heating Cooling Coercivity Head Field Toperating Twrite Media Temperature 6 HAMR HEAD w/LASER ELEMENT 7 Heat Activated Magnetic Recording (HAMR) 1. Major HDD Modification 2. Adds Laser Element to HDD Heads (+3X Mass To Slider) 3. Involves FePtX Magnetic Media (Lower Curie Temperature) 4. Grain Diameter Scaling Levels Out 5. Disk Lube, Overcoat Modifications 6.
    [Show full text]
  • Windows in Concurrent PC
    Using Concurrent PC DOS OTHER BOOKS BY THE AUTHOR Microcomputer Operating Systems (1982) The Byte Guide to CP/M-86 (1984) Using Concurrent PC DOS Mark Dahmke McGraw-Hili Book Company New York St. Louis San Francisco Auckland Bogota Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto Library of Congress Cataloging-in-Publication Data Dahmke, Mark. U sing Concurrent PC DOS. Bibliography: p. Includes index. 1. Concurrent PC DOS (Computer operation system) 1. Title. QA76.76.063D34 1986 005.4' 469 85-15473 ISBN 0-07-015073-7 Copyright © 1986 by McGraw-Hili, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. 1234567890 DOC/DOC 893210876 ISBN 0-07-015073-7 The editors for this book were Steven Guty and Vivian Koenig, the designer was Naomi Auerbach, and the production supervisor was Teresa F. Leaden. It was set in Century Schoolbook by Byrd Data Imaging. Printed and bound by R. R. Donnelley & Sons Company. To my sister Patricia Contents Chapter 1. Introduction 1 What Is Concurrent PC DOS? 1 What Is an Operating System? 1 The DOS Family Tree 3 The Scope of This Book 5 Chapter 2. Concurrent PC DOS Compatibility 6 Concurrent PC DOS Compatibility 6 PC·DOS, TopView, and the IBM PC AT 7 Concurrent CP/M·86 9 Chapter 3.
    [Show full text]
  • Computer Hardware SIG Non-Removable Storage Devices – Feb
    Computer Hardware SIG Non-Removable Storage Devices – Feb. 1, 2012 A hard disk drive (HDD; also hard drive, hard disk, or disk drive) is a device for storing and retrieving digital information, primarily computer data. It consists of one or more rigid (hence "hard") rapidly rotating discs (often referred to as platters), coated with magnetic material and with magnetic heads arranged to write data to the surfaces and read it from them. Hard drives are classified as non-volatile, random access, digital, magnetic, data storage devices. Introduced by IBM in 1956, hard disk drives have decreased in cost and physical size over the years while dramatically increasing in capacity and speed. Hard disk drives have been the dominant device for secondary storage of data in general purpose computers since the early 1960s. They have maintained this position because advances in their recording capacity, cost, reliability, and speed have kept pace with the requirements for secondary storage Types of Hard Drives Parallel ATA (PATA), originally AT Attachment (old term IDE), is an interface standard for the connection of storage devices such as hard disks, solid-state drives, floppy drives, and optical disc drives in computers. The standard is maintained by X3/INCITS committee. It uses the underlying AT Attachment (ATA) and AT Attachment Packet Interface (ATAPI) standards. The Parallel ATA standard is the result of a long history of incremental technical development, which began with the original AT Attachment interface, developed for use in early PC AT equipment. The ATA interface itself evolved in several stages from Western Digital's original Integrated Drive Electronics (IDE) interface.
    [Show full text]
  • Operating Systems Disk Management
    Operating Systems Disk Management Disks, SSDs, RAID, Caching Peter R. Pietzuch [email protected] Disks have come a long way... • IBM 305 RAMAC (1956) – First commercial hard disk: 4.4MB – Footprint: 1.5 m2 – Price: $160,000 • Toshiba 0.85” disk (2005) – Capacity: 4GB – Price: <$300 1 Disk Evolution • Capacity increases exponentially – Access speeds not so much... (why?) 2 Disk Evolution http://www.anandtech.com/show/9866/hard-disk-drives-with-hamr-technology-set-to-arrive-in-2018 3 What is driving demand? Eric Brewer. https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf 4 Disk Storage Devices 5 Tracks and Cylinders Track Track Cylinder Track Track 6 Sample Disk Specification Parameter IBM 360KB Seagate floppy disk Barracuda ST3400832AS No. of cylinders 40 16,383 Tracks / cylinder 2 16 Sectors / track 9 63 Bytes / sector 512 512 Sectors / disk 720 781,422,768 Disk capacity 360KB 400GB 7 Sector Layout • Surface divided into 20 or more zones – Outer zones have more sectors per track – Ensures that sectors have same physical length – Zones hidden using virtual geometry 8 Disk Addressing • Physical hardware address: (cylinder, surface, sector) – But actual geometry complicated è hide from OS • Modern disks use logical sector addressing (or logical block addresses LBA) – Sectors numbered consecutively from 0..n – Makes disk management much easier – Helps work around BIOS limitations • Original IBM PC BIOS 8GB max • 6 bits for sector, 4 bits for head, 14 bits for cylinder 9 Disk Capacity • Disk capacity
    [Show full text]
  • Hard Disk Drive Specifications Models: 2R015H1 & 2R010H1
    Hard Disk Drive Specifications Models: 2R015H1 & 2R010H1 P/N:1525/rev. A This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein – which will be incorporated in revised editions of the publication. Maxtor may make changes or improvements in the product(s) described in this publication at any time and without notice. Copyright © 2001 Maxtor Corporation. All rights reserved. Maxtor®, MaxFax® and No Quibble Service® are registered trademarks of Maxtor Corporation. Other brands or products are trademarks or registered trademarks of their respective holders. Corporate Headquarters 510 Cottonwood Drive Milpitas, California 95035 Tel: 408-432-1700 Fax: 408-432-4510 Research and Development Center 2190 Miller Drive Longmont, Colorado 80501 Tel: 303-651-6000 Fax: 303-678-2165 Before You Begin Thank you for your interest in Maxtor hard drives. This manual provides technical information for OEM engineers and systems integrators regarding the installation and use of Maxtor hard drives. Drive repair should be performed only at an authorized repair center. For repair information, contact the Maxtor Customer Service Center at 800- 2MAXTOR or 408-922-2085. Before unpacking the hard drive, please review Sections 1 through 4. CAUTION Maxtor hard drives are precision products. Failure to follow these precautions and guidelines outlined here may lead to product failure, damage and invalidation of all warranties. 1 BEFORE unpacking or handling a drive, take all proper electro-static discharge (ESD) precautions, including personnel and equipment grounding. Stand-alone drives are sensitive to ESD damage. 2 BEFORE removing drives from their packing material, allow them to reach room temperature.
    [Show full text]
  • Comparing SLC and MLC Flash Technologies and Structure
    September, 2009 Version 1.0 Comparing SLC and MLC Flash Technologies and Structure Author: Ethan Chen/ Tones Yen E-mail: [email protected]; [email protected] www.advantech.com September, 2009 Version 1.0 Table of Contents NOR versus NAND Memory .......................................................................................................1 NOR and NAND Technologies ................................................................................................1 The Cell Structure of NOR and NAND Memory ......................................................................1 Comparing Single-Level Cell and Multi-Level Cell Flash Technologies and Structure ......................................................................................................................................3 Conclusion...................................................................................................................................4 www.advantech.com NOR versus NAND Memory NOR and NAND Technologies In simplest terms, NAND Flash memory refers to sequential access devices that are best suited for handling data storage such as pictures, music, or data files. NOR Flash, on the other hand, is designed for random access devices that are best suited for storage and execution of program code. Code storage applications include STBs (Set-Top Boxes), PCs (Personal Computers), and cell phones. NAND Flash memory can also be used for some boot-up operations. The Cell Structure of NOR and NAND Memory A NAND Flash array is grouped
    [Show full text]
  • Think Your Business Can't Afford to Implement Flash Storage? Maybe You Can't Afford Not to Introduction Comparing Hard Disk
    Think Your Business Can’t Afford to Implement Flash Storage? Maybe You Can’t Afford Not To An Executive Brief Sponsored by IBM Introduction Storage growth consistently ranks among the top data center concerns cited by IT leaders in a Frost & Sullivan annual survey. If the issue were simply one of volume, storage administrators would just load the data onto tape and send it to an offsite vault. Instead, enterprises want to unlock the value of their growing data assets. And therein lies the challenge. In a hypercompetitive business environment, organizations expect their data to work harder than ever before. Data is accessed by multiple applications; combined with data from multiple sources; analyzed, The right flash system will deliver replicated, encrypted, and utilized over an extended period performance benefits that can offset of time. Storage administrators, long accustomed to buying topline costs. more hardware to accommodate the growing volumes of data, are now facing urgent needs for performance—that is, ensuring the data is continually available for processing in real time, as needed, for a reasonable cost. To respond to changing needs, storage technologies have evolved. New systems are being introduced that rely on flash (or solid state) technology, which provides greater density, faster transactions, higher availability, and greater power efficiency than traditional hard drives. Unfortunately, many businesses associate flash with a premium price-point, and decide they cannot justify the investment. Perhaps they’re looking at the wrong flash systems. The right flash storage system can fit right into the enterprise data center environment, optimizing the most critical data workloads, including those that rely on powerful, next-generation mainframes.
    [Show full text]
  • The Acquisition and Analysis of Random Access Memory
    Currently “In Submission” to JDFP (some content may change before publication) THE ACQUISITION AND ANALYSIS OF RANDOM ACCESS MEMORY Timothy Vidas Naval Postgraduate School Monterey, CA ABSTRACT Mainstream operating systems (and the hardware they run on) fail to purge the contents of portions of volatile memory when that portion is no longer required for operation. Similar to how many file systems simply mark a file as deleted instead of actually purging the space that the file occupies on disk, Random Access Memory (RAM) is commonly littered with old information in unallocated space waiting to be reused. Additionally, RAM contains constructs and caching regions that include a wealth of state related information. The availability of this information along with techniques to recover it, provide new methods for investigation. This article discusses the benefits and drawbacks of traditional incident response methods compared to an augmented model that includes the capture and subsequent analysis of a suspect system’s memory, provides a foundation for analyzing captured memory, and provides suggestions for related work in an effort to encourage forward progress in this relatively new area of digital forensics. KEYWORDS: memory, random access memory, memory analysis, digital forensics, Windows forensics, incident response, best practices Tim Vidas is a Research Associate at the Naval Postgraduate School. He has been focusing research in the field of digital forensics for a few years and is now primarily working on in the area of trusted operating systems and kernels. In addition to research, he likes to teach and has a wide set of IT related interests. He maintains several affiliations like ACM, CERT, and Infragard and holds several certifications such as CISSP, Sec+ and EnCE.
    [Show full text]