Houston Makes History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue 106, May 2006
37 th Lunar and Planetary Science Conference THE CONFERENCE IN REVIEW Attendance at the 37th Lunar and Planetary Science Conference (LPSC) set yet another record for this conference, with 1546 participants from 24 countries attending the meeting held at the South Shore Harbour Resort and Conference Center in League City, Texas, on March 13–17, 2006 (see inset for attendance statistics). Rearrangement of the confi guration of the meeting rooms, along with additional overfl ow seating, allowed conference organizers and staff to accommodate the marked increase in attendance, thereby being able to maintain the current meeting venue and hence the low registration fee, which enables the high number of student attendees. LPSC continues to be recognized among the international science community as the most important planetary conference in the world, and this year’s meeting substantiated the merit of that reputation. More than 1400 abstracts were submitted in consideration for presentation at the conference, and hundreds of planetary scientists and students attended both oral and poster sessions focusing on such diverse topics as the Moon, Mars, Mercury, and Venus; outer planets and satellites; meteorites; comets, asteroids, and other small bodies; Limpacts; interplanetary dust particles and presolar grains; origins of planetary systems; planetary formation and early evolution; and astrobiology. Sunday night’s registration and reception were again held at the Center for Advanced Space Studies, which houses the Lunar and Planetary Institute. Featured on Sunday night was an open house for the display of education and public outreach activities and programs. Highlights of the conference program, established by the program committee under the guidance of co-chairs Dr. -
Interview Transcript
NASA JOHNSON SPACE CENTER ORAL HISTORY PROJECT ORAL HISTORY TRANSCRIPT VANCE D. BRAND INTERVIEWED BY REBECCA WRIGHT HOUSTON, TEXAS – 25 JULY 2000 WRIGHT: Today is July 25th, the year 2000. This oral history is being conducted with Vance Brand at the Johnson Space Center in Houston, Texas. The interviewer is Rebecca Wright with the Johnson Space Center Oral History Project. Thank you again, Mr. Brand, for visiting with us today. In 1975, on July 15th, there was a historic moment in space when the two world superpowers for space exploration came together. You were very much a part of that. We’d like to visit with you about that role today. Could you tell us when you first became aware that the United States and USSR [Union of Soviet Socialist Republics] were going to have this mission, and what your thoughts were at that time when you heard about this never-before mission being planned? BRAND: Well, the agreement to have the mission was made between President [Richard M.] Nixon and [Soviet Premier Alexei N.] Kosygin of the Soviet Union in 1971. So sometime shortly after that, I became aware that there would be such a mission. I became increasingly aware because people like [Vladimir A.] Shatalov, [Alexei S.] Yeliseyev, senior cosmonauts from the then Soviet Union, came over. They looked at our facilities and met us. They were taken out to ranches nearby. Of course, this was in the middle of the Cold War, and there was a lot of tension between the Soviet Union and the United States, so this was all a very unique sort of thing. -
In Memory of Astronaut Michael Collins Photo Credit
Gemini & Apollo Astronaut, BGEN, USAF, Ret, Test Pilot, and Author Dies at 90 The Astronaut Scholarship Foundation (ASF) is saddened to report the loss of space man Michael Collins BGEN, USAF, Ret., and NASA astronaut who has passed away on April 28, 2021 at the age of 90; he was predeceased by his wife of 56 years, Pat and his son Michael and is survived by their daughters Kate and Ann and many grandchildren. Collins is best known for being one of the crew of Apollo 11, the first manned mission to land humans on the moon. Michael Collins was born in Rome, Italy on October 31, 1930. In 1952 he graduated from West Point (same class as future fellow astronaut, Ed White) with a Bachelor of Science Degree. He joined the U.S. Air Force and was assigned to the 21st Fighter-Bomber Wing at George AFB in California. He subsequently moved to Europe when they relocated to Chaumont-Semoutiers AFB in France. Once during a test flight, he was forced to eject from an F-86 after a fire started behind the cockpit; he was safely rescued and returned to Chaumont. He was accepted into the USAF Experimental Flight Test Pilot School at Edwards Air Force Base in California. In 1960 he became a member of Class 60C which included future astronauts Frank Borman, Jim Irwin, and Tom Stafford. His inspiration to become an astronaut was the Mercury Atlas 6 flight of John Glenn and with this inspiration, he applied to NASA. In 1963 he was selected in the third group of NASA astronauts. -
A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Om on Lindsay Kathleen Anderson
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oM on Lindsay Kathleen Anderson Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Anderson, Lindsay Kathleen, "A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oonM " (2016). Theses and Dissertations. 1860. https://commons.und.edu/theses/1860 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE GEOLOGY TOOLS USED DURING THE APOLLO LUNAR PROGRAM AND THEIR SUITABILITY FOR FUTURE MISSIONS TO THE MOON by Lindsay Kathleen Anderson Bachelor of Science, University of North Dakota, 2009 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2016 Copyright 2016 Lindsay Anderson ii iii PERMISSION Title A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. -
Gemini 4 an Astronaut Steps Into the Void
springer.com Popular Science : Popular Science in Astronomy Shayler, David J. Gemini 4 An Astronaut Steps into the Void Details the first American spacewalk in a leap forward from the Mercury program Follows each detail of Gemini's extended duration flight, NASA's first, relying extensively on archives Continues the Pioneers in Early Spaceflight series which looks one-by-one at the Mercury and Gemini flights The flight of Gemini 4 in June 1965 was conducted barely four years after the first Americans flew in space. It was a bold step by NASA to accomplish the first American spacewalk and to extend the U.S. flight duration record to four days. This would be double the experience gained from the six Mercury missions combined. This daring mission was the first to be directed from Springer the new Mission Control at the Manned Spacecraft Center near Houston, Texas. It also revealed 1st ed. 2018, XXV, 378 p. that: Working outside the spacecraft would require further study. Developing the techniques to 1st 81 illus., 46 illus. in color. rendezvous with another object in space would not be as straightforward as NASA had hoped. edition Living in a small spacecraft for several days was a challenging but necessary step in the quest for even longer flights.Despite the risks, the gamble that astronauts Jim McDivitt and Ed White undertook paid off. Gemini 4 gave NASA the confidence to attempt an even longer flight the Printed book next time. That next mission would simulate the planned eight-day duration of an Apollo lunar Softcover voyage. -
PSAD-81-2 Support Service Contracting at Johnson Space
BY THEU.S. GENERAL ACCOUNTli’JG OFFICE Report To The Administrator, National Aeronautics And Space Administration S@pportService Contracting At Johnson Space Center Needs Strengthening T National Aeronautics and S ace Administration Sl about $175 million annual Py on support service Cl at Johnson Space Center. GAO tested the way si of these contracts are administered and found --a contractor was working without approved llllllllllllllll113606 work orders, --Government-furnished equipment was unac- counted for, --questionable reimbursements occurred for con- tractor costs, I --contract funds increased before the need was justified, I --contracting officers were unaware of their re- sponsibilitres and unfamiliar with contract terms, and I --some contracting officers had a general attitude that small dollar value contracts are not worthy of adequate attention. I ‘/A0 believes overreliance on cost-type contracts which quire greater administration efforts than fixed-price )ntracts contributes to these contracting weaknesses recommends that the National Aeronautics and ace Administration take corrective actions. mp81s2 OCTOBER 21,1900 + Request for copies of GAO reports should be sent to: U.S. General Accounting Office Document Handling and Information Services Facility P.O. Box 6015 Gaithersburg, Md. 20760 Telephone (202) 275-6241 The first five copies of individual reports are free of charge. Additional copies of bound audit reports are $3.25 each. Additional copies of unbound report (i.e., letter reports) and most other publications are $1.00 each. There will be a 25% discount on all orders for 100 or more copies mailed to a single address. Sales orders must be prepaid on a cash, check, or money order basis. -
Three Decades Ago, in Boston, Massachusetts, USA, I Met the First Man to Walk in Space
Three decades ago, in Boston, Massachusetts, USA, I met the first man to walk in space. As a broadcaster, I was, at that time, a member of the on-air crew of Boston's Kiss 108 morning radio show. Entering the studio, I was greeted by the show's producer, Rocky (the late Richard "Rocky" Buono), who informed me that Russian hero and cosmonaut, Alexei Leonov, was set to visit our studio that day. Rocky knew that I was a lifelong space enthusiast who would be thrilled to meet General Leonov, and he had purposely not let me know in advance, as he had wanted this space legend's visit to be a surprise. It was a surprise, all right. For some inexplicable reason, earlier that morning, while dressing for work, I had abandoned my nearly-constant wardrobe of plain black clothing, and had chosen to wear a bold red, white and blue outfit that had been presented to me at a radio promotion. I looked, said Rocky, "like a walking American flag" on the day that a Russian icon would be visiting us. For the radio crew, my uncharacteristic fashion choice was a source of general hilarity. For me, it was a nightmare. As a proud American, I respect others who feel pride in their own nation, and would never wish to signal otherwise. I was about to meet a Russian hero... and I was concerned that my loud red, white and blue outfit might, inadvertently, send an unwelcoming message to a great man for whom I held tremendous admiration. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
EXPLORING the MOON in the 21St CENTURY
CosmoELEMENTS EXPLORING THE MOON IN THE 21st CENTURY Samuel J. Lawrence1 and Clive R. Neal2 DOI: 10.2138/gselements.15.5.360 INTRODUCTION In 2019, we are celebrating the 50th anniversary of NASA’s momentous Apollo expedi- tions to the Moon. The samples brought back by the astronauts, and the fieldwork those astro- The South Pole of the Moon, pictured here in an oblique view from FIGURE 1 NASA’s Lunar Reconnaissance Orbiter, is the landing site for the nauts performed on the lunar surface, cemented the Moon’s status as seventh human lunar landing. IMAGE COURTESY OF NAC M1195011983LR (NASA/ the cornerstone of the solar system. It is not an exaggeration to say GSFC/ARIZONA STATE UniVERSITY). that the Apollo expeditions transformed our understanding of our solar system, and, in fact, most of the discoveries made in planetary science since the 1960s can trace directly, or indirectly, from the scientific of the Sun’s evolution and history. Finally, this is another area where results of those Apollo expeditions. the Apollo expeditions represent a strength: there are five decades worth of planetary science hypotheses that lunar geological fieldwork Although some erroneously proclaim that the Moon is “Been there, will address. The lunar surface could also provide a unique and stable done that”, nothing could be further from the truth. After a long long-term platform for astronomy. In particular, manned radio obser- st hiatus, beginning in the first years of the 21 century, there has vatories or optical interferometers on the far side of the Moon could been a resurgence of interest in the Moon, including the Kaguya produce dramatic advances in astrophysics. -
Appendix a Apollo 15: “The Problem We Brought Back from the Moon”
Appendix A Apollo 15: “The Problem We Brought Back From the Moon” Postal Covers Carried on Apollo 151 Among the best known collectables from the Apollo Era are the covers flown onboard the Apollo 15 mission in 1971, mainly because of what the mission’s Lunar Module Pilot, Jim Irwin, called “the problem we brought back from the Moon.” [1] The crew of Apollo 15 carried out one of the most complete scientific explorations of the Moon and accomplished several firsts, including the first lunar roving vehicle that was operated on the Moon to extend the range of exploration. Some 81 kilograms (180 pounds) of lunar surface samples were returned for anal- ysis, and a battery of very productive lunar surface and orbital experiments were conducted, including the first EVA in deep space. [2] Yet the Apollo 15 crew are best remembered for carrying envelopes to the Moon, and the mission is remem- bered for the “great postal caper.” [3] As noted in Chapter 7, Apollo 15 was not the first mission to carry covers. Dozens were carried on each flight from Apollo 11 onwards (see Table 1 for the complete list) and, as Apollo 15 Commander Dave Scott recalled in his book, the whole business had probably been building since Mercury, through Gemini and into Apollo. [4] People had a fascination with objects that had been carried into space, and that became more and more popular – and valuable – as the programs progressed. Right from the start of the Mercury program, each astronaut had been allowed to carry a certain number of personal items onboard, with NASA’s permission, in 1 A first version of this material was issued as Apollo 15 Cover Scandal in Orbit No. -
Project Mercury Fact Sheet
NASA Facts National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 April 1996 FS-1996-04-29-LaRC ___________________________________________________________________________ Langley’s Role in Project Mercury Project Mercury Thirty-five years ago on May 5, 1961, Alan Shepard was propelled into space aboard the Mercury capsule Freedom 7. His 15-minute suborbital flight was part of Project Mercury, the United States’ first man-in-space program. The objectives of the Mer- cury program, eight unmanned flights and six manned flights from 1961 to 1963, were quite specific: To orbit a manned spacecraft around the Earth, investigate man’s ability to function in space, and to recover both man and spacecraft safely. Project Mercury included the first Earth orbital flight made by an American, John Glenn in February 1962. The five-year program was a modest first step. Shepard’s flight had been overshadowed by Russian Yuri Gagarin’s orbital mission just three weeks earlier. President Kennedy and the Congress were NASA Langley Research Center photo #59-8027 concerned that America catch up with the Soviets. Langley researchers conduct an impact study test of the Seizing the moment created by Shepard’s success, on Mercury capsule in the Back River in Hampton, Va. May 25, 1961, the President made his stirring chal- lenge to the nation –– that the United States commit Langley Research Center, established in 1917 itself to landing a man on the moon and returning as the National Advisory Committee for Aeronautics him to Earth before the end of the decade. Apollo (NACA) Langley Memorial Aeronautical Labora- was to be a massive undertaking –– the nation’s tory, was the first U.S. -
Celebrate Apollo
National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world.