The Visible Radio: Process Visualization of a Software-Defined Radio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
US2959674.Pdf
Nov. 8, 1960 T. R. O "MEARA 2,959,674 GAIN CONTROL FOR PHASE AND GAIN MATCHED MULTI-CHANNEL RADIO RECEIVERS Filed July 2, 1957 2. Sheets-Sheet 2 PETARD CONVERTER TUBE Ë????Q. F SiGNAL OUTPUT OSC. S. G. INPUT INVENTOR. 77/OMAS A. O’MEAAA AT 7OAPWA 3 2,959,674 United States Patent Office Patented Nov. 8, 1960 1. 2 linear type. By a linear type frequency changer is meant a device with output current or voltage which is a linear 2.959,674 function of either the RF input signal or local oscillator GAIN CONTROL FOR PHASE AND GAN signal alone and with a conversion transconductance MATCHED MULT-CHANNELRADIO RE. 5 characteristic which varies linearly with the magnitude of CEIVERS the voltage at the local oscillator input to the device. Thomas R. O'Meara, Los Angeles, Calif., assignor, by This means that, if instead of being an alternating voltage, meSne assignments, to the United States of America as the RF signal input to the device were maintained at a represented by the Secretary of the Navy constant D.C. voltage and the oscillator signal were re 0. placed by a D.C. voltage excursion, then a plot of the Filed July 2, 1957, Ser. No. 669,691 output current or voltage of the device versus the local oscillator signal voltage would be a straight line. Simi 3 Claims. (Cl. 250-20) larly, if the local oscillator signal voltage input to the device were kept at a constant D.C. value, instead of This invention relates to a gain control for electronic 5 being an A.C. -
Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10
EE447 Lecture 6 Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10 HW7;5-4,5-7,5-13a-d,5-23,5-31 Due next Monday, 29th 1 Figure 4–29 Superheterodyne receiver. m(t) 2 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 1 EE447 Lecture 6 Synchronous Demodulation s(t) LPF m(t) 2Cos(2πfct) •Only method for DSB-SC, USB-SC, LSB-SC •AM with carrier •Envelope Detection – Input SNR >~10 dB required •Synchronous Detection – (no threshold effect) •Note the 2 on the LO normalizes the output amplitude 3 Figure 4–24 PLL used for coherent detection of AM. 4 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 2 EE447 Lecture 6 Envelope Detector C • Ac • (1+ a • m(t)) Where C is a constant C • Ac • a • m(t)) 5 Envelope Detector Distortion Hi Frequency m(t) Slope overload IF Frequency Present in Output signal 6 3 EE447 Lecture 6 Superheterodyne Receiver EE445-09 7 8 4 EE447 Lecture 6 9 Super-Heterodyne AM Receiver 10 5 EE447 Lecture 6 Super-Heterodyne AM Receiver 11 RF Filter • Provides Image Rejection fimage=fLO+fif • Reduces amplitude of interfering signals far from the carrier frequency • Reduces the amount of LO signal that radiates from the Antenna stop 2/22 12 6 EE447 Lecture 6 Figure 4–30 Spectra of signals and transfer function of an RF amplifier in a superheterodyne receiver. 13 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. -
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location Aadil Volkwin A dissertation submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. Cape Town, May 2008 Dedicated to: My Parents, my Sister and my Wife. 2 Declaration I declare that this work done is my own, unaided work. This dissertation is being submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. It has not been submitted for any degree or examination in any other university. ................................................................................ Signature of Author Cape Town 2008 3 Abstract This dissertation provides a comprehensive discussion around bistatic radar with specific reference to PCL, highlighting existing literature and work, examining the various performance metrics. In particular the performance of commercial FM radio broadcasts as the radar waveform is examined by implementation of the ambiguity function. The FM signals show desirable characteristics in the context of our application, the average range resolution obtained is 5.98km, with range and doppler peak sidelobe levels measured at -25.98dB and -33.14dB respectively. Furthermore, the SDR paradigm and technology is examined, with discussion around the design considerations. The USRP, the TVRx daughterboard and GNURadio are examined further as a potential receiver and development environment, in this light. The system meets the low cost ambitions costing just over US$1000.00 for the USRP motherboard and a single daughterboard. Furthermore it performs well, displaying desirable characteristics, The receiver's frontend provides a bandwidth of 6MHz and a tunable range between 50MHz and 800MHz, with a tuning step size as low as 31.25kHz. -
Of Single Sideband Demodulation by Richard Lyons
Understanding the 'Phasing Method' of Single Sideband Demodulation by Richard Lyons There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are: • synchronous detection, • phasing method, • Weaver method, and • filtering method. Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION' section. BACKGROUND I was recently involved in trying to understand the operation of a discrete SSB demodulation system that was being proposed to replace an older analog SSB demodulation system. Having never built an SSB system, I wanted to understand how the "phasing method" of SSB demodulation works. However, in searching the Internet for tutorial SSB demodulation information I was shocked at how little information was available. The web's wikipedia 'single-sideband modulation' gives the mathematical details of SSB generation [1]. But SSB demodulation information at that web site was terribly sparse. In my Internet searching, I found the SSB information available on the net to be either badly confusing in its notation or downright ambiguous. That web- based material showed SSB demodulation block diagrams, but they didn't show spectra at various stages in the diagrams to help me understand the details of the processing. A typical example of what was frustrating me about the web-based SSB information is given in the analog SSB generation network shown in Figure 1. x(t) cos(ωct) + 90o 90o y(t) – sin(ωct) Meant to Is this sin(ω t) represent the c Hilbert or –sin(ωct) Transformer. -
Front-End Receiver: Recent and Emerging Trend Ulrich L
Front-End Receiver: Recent and Emerging Trend Ulrich L. Rohde Ajay K. Poddar Enrico Rubiola Marius A. Silaghi BTU Cottbus 03046 Germany Synergy Microwave NJ USA FEMTO-ST Inst. Besancon France University of Oradea, Romania Abstract—This paper describes the recent trend of front-end receiver systems for the application in radio monitoring. The 650 MHz to 1300 MHz receiver implementation is optimized for applications such as 20 MHz to 650 MHz hunting and detecting unknown signals, identifying interference, Vin =−117 dBm (0.3 μV) ≥10 dB Vin=−47 dBm (1 mV) ≥50 dB spectrum monitoring and clearance, and signal search over wide LSB/USB, IF bandwidth 500 frequency ranges, producing signal content and direction finding Hz, of identified signals. Δf=500 Hz 0.5 MHz to 20 MHz, ≥10 dB Keywords—Receivers, Real time FFT Processing Vin=0.4μV 20 to 30 MHz, Vin= 0.5 μV ≥10 dB I. INTRODUCTION LSB/USB, IF bandwidth The emerging security threats demand an intensive data 2.5kHz, Δf=1kHz gathering for fiber or radio communication [1]. Besides the 0.5 MHz to 20 MHz, ≥10 dB fiber technology, there are varieties of wireless activities, Vin=0.6μV which are typically analyzed by off the air monitoring [2]-[9]. 20 to 30 MHz, Vin= 0.7 μV ≥10 dB The spectral density of signals these days is very high and Vin= 100 μV ≥46 dB therefore such monitoring receivers require high performance. AM, IF Bandwidth 2.5kHz, The technique in designing such receivers is a composition of fmod=1 kHz, m=0.5 0.5 MHz to 20 MHz, ≥10 dB microwave engineering of the building blocks preamplifier, Vin=1μV mixer, synthesizer and necessary filters, this paper describes 20 to 30 MHz, Vin= 1.2 μV ≥10 dB critical aspects of important building blocks of radio Crossmodulation interfering monitoring receives [10]-[20]. -
An Analysis of a Quadrature Double-Sideband/Frequency Modulated Communication System
Scholars' Mine Masters Theses Student Theses and Dissertations 1970 An analysis of a quadrature double-sideband/frequency modulated communication system Denny Ray Townson Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Townson, Denny Ray, "An analysis of a quadrature double-sideband/frequency modulated communication system" (1970). Masters Theses. 7225. https://scholarsmine.mst.edu/masters_theses/7225 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. AN ANALYSIS OF A QUADRATURE DOUBLE- SIDEBAND/FREQUENCY MODULATED COMMUNICATION SYSTEM BY DENNY RAY TOWNSON, 1947- A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI - ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 1970 ii ABSTRACT A QDSB/FM communication system is analyzed with emphasis placed on the QDSB demodulation process and the AGC action in the FM transmitter. The effect of noise in both the pilot and message signals is investigated. The detection gain and mean square error is calculated for the QDSB baseband demodulation process. The mean square error is also evaluated for the QDSB/FM system. The AGC circuit is simulated on a digital computer. Errors introduced into the AGC system are analyzed with emphasis placed on nonlinear gain functions for the voltage con trolled amplifier. -
Master's Thesis
Eindhoven University of Technology MASTER Mapping a China Digital Radio (CDR) receiver on a software-defined-radio platform Cheng, Y. Award date: 2017 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Algorithm & Software Innovation Mapping a China Digital Radio (CDR) receiver on a Software-Defined-Radio platform Master Thesis Yan Cheng Supervisors: prof.dr.ir.C.H.(Kees) van Berkel Dr.Hong Li Eindhoven, August 2017 Abstract With the launch of the China Digital Radio (CDR) standard in hundreds of cities in China, CDR radio receiver chips are required in market. To explore fast and efficient embedded Software- Defined-Radio (SDR) CDR receiver design and realization, this thesis project used Data-Flow (DF) modeling to study architectural options of a CDR receiver design for an existing NXP SDR chip. -
E2L005 ROTCH a Day in the Life of the RF Spectrum
A Day in the Life of the RF Spectrum by James E. Cooley B.S., Computer Engineering Northwestern University (1999) Submitted to the Program of Media Arts and Sciences, School of Architecture and Planning, In partial fulfillment of the requirement for the degree of MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2005 © Massachusetts Institute of Technology, 2005. All rights reserved. Signature of Author: Program in Media Arts and Sciences August 5, 2005 Certified by: Andrew B. Lippman Senior Research Scientist of Media Arts and Sciences Program in Media Arts and Sciences Thesis Supervisor Accepted by: Andrew B. Lippman Chairman, Departmental Committee on Graduate Studies Program in Media Arts and Sciences tMASSACHUSETT NSE IT 'F TECHNOLOG Y E2L005 ROTCH A Day in the Life of the RF Spectrum by James E. Cooley Submitted to the Program of Media Arts and Sciences, School of Architecture and Planning, September 2005 in partial fulfillment of the requirement for the degree of Master of Science in Media Arts and Sciences Abstract There is a misguided perception that RF spectrum space is fully allocated and fully used though even a superficial study of actual spectrum usage by measuring local RF energy shows it largely empty of radiation. Traditional regulation uses a fence-off policy, in which competing uses are isolated by frequency and/or geography. We seek to modernize this strategy. Given advances in radio technology that can lead to fully cooperative broadcast, relay, and reception designs, we begin by studying the existing radio environment in a qualitative manner. -
Arxiv:1306.0942V2 [Cond-Mat.Mtrl-Sci] 7 Jun 2013
Bipolar electrical switching in metal-metal contacts Gaurav Gandhi1, a) and Varun Aggarwal1, b) mLabs, New Delhi, India Electrical switching has been observed in carefully designed metal-insulator-metal devices built at small geometries. These devices are also commonly known as mem- ristors and consist of specific materials such as transition metal oxides, chalcogenides, perovskites, oxides with valence defects, or a combination of an inert and an electro- chemically active electrode. No simple physical device has been reported to exhibit electrical switching. We have discovered that a simple point-contact or a granu- lar arrangement formed of metal pieces exhibits bipolar switching. These devices, referred to as coherers, were considered as one-way electrical fuses. We have identi- fied the state variable governing the resistance state and can program the device to switch between multiple stable resistance states. Our observations render previously postulated thermal mechanisms for their resistance-change as inadequate. These de- vices constitute the missing canonical physical implementations for memristor, often referred as the fourth passive element. Apart from the theoretical advance in un- derstanding metallic contacts, the current discovery provides a simple memristor to physicists and engineers for widespread experimentation, hitherto impossible. arXiv:1306.0942v2 [cond-mat.mtrl-sci] 7 Jun 2013 a)Electronic mail: [email protected] b)Electronic mail: [email protected] 1 I. INTRODUCTION Leon Chua defines a memristor as any two-terminal electronic device that is devoid of an internal power-source and is capable of switching between two resistance states upon application of an appropriate voltage or current signal that can be sensed by applying a relatively much smaller sensing signal1. -
Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers
Linköping Studies in Science and Technology Dissertation No. 1036 Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson Electronic Devices Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2006 ISBN 91-85523-22-4 ISSN 0345-7524 ii Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson ISBN 91-85523-22-4 Copyright c Stefan Andersson, 2006 Linköping Studies in Science and Technology Dissertation No. 1036 ISSN 0345-7524 Electronic Devices Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden Author e-mail: [email protected] Cover Image Picture by the author illustrating an RF-sampling receiver on block level. The chip microphotograph represents a multiband direct RF-sampling receiver front-end for WLAN fabricated in 0.13 µm CMOS. Printed by LiU-Tryck, Linköping University Linköping, Sweden, 2006 I nådens år 2006! As my grandfather would have said. iii iv Abstract The wireless market is developing very fast today with a steadily increasing num- ber of users all around the world. An increasing number of users and the constant need for higher and higher data rates have led to an increasing number of emerging wireless communication standards. As a result there is a huge demand for flexible and low-cost radio architectures for portable applications. Moving towards multi- standard radio, a high level of integration becomes a necessity and can only be ac- complished by new improved radio architectures and full utilization of technology scaling. Modern nanometer CMOS technologies have the required performance for making high-performance RF circuits together with advanced digital signal processing. -
Fm Demodulation Using a Digital Radio and Digital Signal Processing
FM DEMODULATION USING A DIGITAL RADIO AND DIGITAL SIGNAL PROCESSING By JAMES MICHAEL SHIMA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 1995 Copyright 1995 by James Michael Shima To my mother, Roslyn Szego, and To the memory of my grandmother, Evelyn Richmond. ACKNOWLEDGMENTS First, I would like to thank Mike Dollard and John Abaunza for their extended support of my research. Moreover, their guidance and constant tutoring were unilaterally responsible for the origin of this thesis. I am also grateful to Dr. Scott Miller, Dr. Jose Principe, and Dr. Michel Lynch for their support of my research and their help with my thesis. I appreciate their investment of time to be on my supervisory committee. Mostly, I must greatly thank and acknowledge my mother and father, Ronald and Roslyn Szego. Without their unending help in every facet of life, I would not be where I am today. I also acknowledge and greatly appreciate the financial help of my grandmother, Mae Shima. iv TABLE OF CONTENTS ACKNOWLEDGMENTS ................................................................................................. iv CHAPTER 1 ........................................................................................................................1 INTRODUCTION................................................................................................................1 1.1 Background Overview ............................................................................................1 -
Amplitude Modulation
ENSC327 Communications Systems 3. Amplitude Modulation School of Engineering Science Simon Fraser University 1 Outline Some Required Background Overview of Modulation What is modulation? Why modulation? Overview of analog modulation History of AM & FM Radio Broadcast Linear Modulation: Amplitude modulation 2 Some Required Background Basics of sinusoidal signals: amplitude, frequency, phase. RC Circuits, Natural Response. Assume initial voltage to be ( ). Recall from ENSC-220, what is ( )? 0 Fourier Transform of cos 2 or a complex exponential. Properties of FT, e.g., shift in frequency, Parseval’s theorem. Definition of Bandwidth (BW) (see Lecture 2) 3 Overview of Modulation What is modulation? The process of varying a carrier signal in order to use that signal to convey information. Why modulation? 1. Reducing the size of the antennas: The optimal antenna size is related to wavelength: Voice signal: 3 kHz 4 Overview of Modulation Why modulation? 2. Allowing transmission of more than one signal in the same channel (multiplexing) 3. Allowing better trade-off between bandwidth and signal-to-noise ratio (SNR) 5 Analog modulation The input message is continuous in time and value Continuous-wave modulation (focus of this course) A parameter of a high-freq carrier is varied in accordance with the message signal If a sinusoidal carrier is used, the modulated carrier is: Linear modulation: A(t) is linearly related to the message. AM, DSB, SSB Angle modulation: Phase modulation: Φ(t) is linearly related the message. Freq.