Insecta: Lepidoptera) SHILAP Revista De Lepidopterología, Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae. -
Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
732 _____________Mun. Ent. Zool. Vol. 7, No. 2, June 2012__________ STRUCTURE OF LEPIDOPTEROCENOSES ON OAKS QUERCUS DALECHAMPII AND Q. CERRIS IN CENTRAL EUROPE AND ESTIMATION OF THE MOST IMPORTANT SPECIES Miroslav Kulfan* * Department of Ecology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, SK-84215 Bratislava, SLOVAKIA. E-mail: [email protected] [Kulfan, M. 2012. Structure of lepidopterocenoses on oaks Quercus dalechampii and Q. cerris in Central Europe and estimation of the most important species. Munis Entomology & Zoology, 7 (2): 732-741] ABSTRACT: On the basis of lepidopterous larvae a total of 96 species on Quercus dalechampii and 58 species on Q. cerris were recorded in 10 study plots of Malé Karpaty and Trnavská pahorkatina hills. The families Geometridae, Noctuidae and Tortricidae encompassed the highest number of found species. The most recorded species belonged to the trophic group of generalists. On the basis of total abundance of lepidopterous larvae found on Q. dalechampii from all the study plots the most abundant species was evidently Operophtera brumata. The most abundant species on Q. cerris was Cyclophora ruficiliaria. Based on estimated oak leaf area consumed by a larva it is shown that Lymantria dispar was the most important leaf-chewing species of both Q. dalechampii and Q. cerris. KEY WORDS: Slovakia, Quercus dalechampii, Q. cerris, the most important species. About 300 Lepidoptera species are known to damage the assimilation tissue of oaks in Central Europe (Patočka, 1954, 1980; Patočka et al.1999; Reiprich, 2001). Lepidoptera larvae are shown to be the most important group of oak defoliators (Patočka et al., 1962, 1999). -
Modular Structure, Sequence Diversification and Appropriate
www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Heathland 700 the Park & Poor's Allotment Species List
The Park & Poor's Allotment Bioblitz 25th - 26th July 2015 Common Name Scientific Name [if known] Site recorded Fungus Xylaria polymorpha Dead Man's Fingers Both Amanita excelsa var. excelsa Grey Spotted Amanita Poor's Allotment Panaeolus sp. Poor's Allotment Phallus impudicus var. impudicus Stinkhorn The Park Mosses Sphagnum denticulatum Cow-horn Bog-moss Both Sphagnum fimbriatum Fringed Bog-moss The Park Sphagnum papillosum Papillose Bog-moss The Park Sphagnum squarrosum Spiky Bog-moss The Park Sphagnum palustre Blunt-leaved Bog-moss Poor's Allotment Atrichum undulatum Common Smoothcap Both Polytrichum commune Common Haircap The Park Polytrichum formosum Bank Haircap Both Polytrichum juniperinum Juniper Haircap The Park Tetraphis pellucida Pellucid Four-tooth Moss The Park Schistidium crassipilum Thickpoint Grimmia Poor's Allotment Fissidens taxifolius Common Pocket-moss The Park Ceratodon purpureus Redshank The Park Dicranoweisia cirrata Common Pincushion Both Dicranella heteromalla Silky Forklet-moss Both Dicranella varia Variable Forklet-moss The Park Dicranum scoparium Broom Fork-moss Both Campylopus flexuosus Rusty Swan-neck Moss Poor's Allotment Campylopus introflexus Heath Star Moss Both Campylopus pyriformis Dwarf Swan-neck Moss The Park Bryoerythrophyllum Red Beard-moss Poor's Allotment Barbula convoluta Lesser Bird's-claw Beard-moss The Park Didymodon fallax Fallacious Beard-moss The Park Didymodon insulanus Cylindric Beard-moss Poor's Allotment Zygodon conoideus Lesser Yoke-moss The Park Zygodon viridissimus Green Yoke-moss -
Lepidoptera in Cheshire in 2002
Lepidoptera in Cheshire in 2002 A Report on the Micro-Moths, Butterflies and Macro-Moths of VC58 S.H. Hind, S. McWilliam, B.T. Shaw, S. Farrell and A. Wander Lancashire & Cheshire Entomological Society November 2003 1 1. Introduction Welcome to the 2002 report on lepidoptera in VC58 (Cheshire). This is the second report to appear in 2003 and follows on from the release of the 2001 version earlier this year. Hopefully we are now on course to return to an annual report, with the 2003 report planned for the middle of next year. Plans for the ‘Atlas of Lepidoptera in VC58’ continue apace. We had hoped to produce a further update to the Atlas but this report is already quite a large document. We will, therefore produce a supplementary report on the Pug Moths recorded in VC58 sometime in early 2004, hopefully in time to be sent out with the next newsletter. As usual, we have produced a combined report covering micro-moths, macro- moths and butterflies, rather than separate reports on all three groups. Doubtless observers will turn first to the group they are most interested in, but please take the time to read the other sections. Hopefully you will find something of interest. Many thanks to all recorders who have already submitted records for 2002. Without your efforts this report would not be possible. Please keep the records coming! This request also most definitely applies to recorders who have not sent in records for 2002 or even earlier. It is never too late to send in historic records as they will all be included within the above-mentioned Atlas when this is produced. -
Big Creek Lepidoptera Checklist
Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae -
British Lepidoptera (/)
British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) FAMILY: YPONOMEUTIDAE (8G +1EX 22S +2EX) Suborder:Glossata Infraorder:Heteroneura, Superfamily:Yponomeutoidea MBGBI3 includes families Ypsolophidae, Plutellidae, Argyresthiidae, Praydidae and Scythropiidae as subfmailies (Ypsolophinae, Plutellinae, Argyresthiinae, Praydinae and Scythropiinae) of Yponomeutidae. MBGBI3 also lists Acrolepiinae a subfamily of Yponomeutidae, it is now considered a subfamily of Glyphipterigidae. The remaining Family: Yponomeutidae is equivalent to Subfamily: Yponomeutinae as considered in MBGBI3. Abdominal tergites spined Uncus present, with a pair of prongs Aedeagus usually with a sheath Larvae are mostly web-spinners Yponomeuta (8S) Head smooth or rough-scaled, frons smooth Proboscis developed Antenna ¾ length of forewing; simple at base, weakly serrate beyond basal quarter, minutely ciliate; scape with or without pecten Labial palp moderate, curved, ascending; S2 somewhat rough ventrally; S3 =/> S2 Forewing broad, discal cell long, almost reaching 5/6; white or whitish with longitudinal rows of black spots Hindwing as long as forewing, elongate-ovate; hyaline space between cell and base (/001-yponomeuta-evonymella-bird-cherry-ermine.html) (/002-yponomeuta-padella-orchard-ermine.html) (/003-yponomeuta-malinellus-apple-ermine.html) (/004-yponomeuta-cagnagella-spindle-ermine.html) -
Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten. -
Euhyponomeutoides Albithoracellus Gen. Nov., Spec. Nov. (Lepidoptera, Hyponomeutidae) by ANDREW J
EUHYPONOMEUTOIDES ALBITHORACELLUS 11 Euhyponomeutoides albithoracellus gen. nov., spec. nov. (Lepidoptera, Hyponomeutidae) by ANDREW J. GAJ In June 1950 I collected at Krynica (Southern Poland) a remarkable moth which I determined temporarily as belonging to the genus Cerostoma Latr. After a more detailed study, however, and after the complete investigation of all materials available for me, it appeared that this moth could not be determined properly. I sent, therefore, this doubtful „Cerostoma” to prof. Dr E. M. Hering of Humbolt-Universität in Berlin asking for comparison with their materials. On the basis of venation, prof. Hering stated that this specimen belongs to the genus Euhyponomeuta Toll. Here, in this place I wish to express my thanks to Dr E. M. Hering for his kind assistance and interest which he showed when dealing with this problem. However after the comparison of the copulatory apparatus of this specimen with the genitalia of several species belonging to the genera Euhyponomeuta Toll, Parahyponomeuta Toll and Hyponomeuta Latr., I found considerable differences between this species and the species of the aforementioned genera. According to the differences in the structure of gnathos and saccus I assume that it is right to create for this species a new genus for which I propose the name Euhyponomeu¬ toides gen. nov. Genotype: E. albithoracellus sp. nov. Fig. 1: The shape of the fore wing of Euhyponomeuta stanellus Thnbg. Fig. 2: The same of the fore wing of Hyponomeuta cognatellus Hbn. Fig. 3: The same of the fore wing of Euhyponomeutoides albithoracellus, gen. nov., sp. nov. Fig. 4: Copulatory apparatus of Euhyponomeutoides albithoracellus, gen. -
Sweetpotato Leaf Miner (341)
Pacific Pests and Pathogens - Fact Sheets https://apps.lucidcentral.org/ppp/ Sweetpotato leaf miner (341) Photo 1. Larval mines of the sweetpotato leafminer, Photo 1. Adult sweetpotato leafminer, Bedellia Bedellia somnulentella. somnulentella. Photo 3. Adult sweetpotato leafminer, Bedellia somnulentella, showing the fringed fore and hindwings. Common Name Sweetpotato leaf miner, morning glory leafminer Scientific Name Bedellia somnulentella; previously known as Bedellia ipomoeae. Distribution Worldwide. Asia, Africa, North America, Europe, Oceania. It is present in Australia, Fiji1, New Zealand, and Papua New Guinea. Hosts Sweet potato, kangkong (Ipomoea aquatica), and bindweeds (Calstegia and Convolvulus species). Symptoms & Life Cycle The damage is done by the larvae. Mines are at first serpentine (snake-like), and filled with frass; they become yellow-brown and later grow in width, forming blotches (Photo 1). At this stage, the larvae protrude from the blotch to defaecate. Later still, holes are produced in the leaves as the blotches are destroyed. The eggs are laid on the leaves, usually on the underside near the midrib, veins or base of the leaf blade. The larvae are yellowish with pink spots along the back, developing into red rounded projections on all segments. When mature, the larvae are 5.5 mm long. They exit the mines and make a network of silk threads on the underside of the leaf. When not feeding, they move around inside the threads, above the leaf surface. Frass often catches in the web of threads. The larvae pupate there. Adults are greyish brown, 3.5-4 mm long, with a tuft of light yellow to brown hairs on the head, and wingspan of 8-10 mm (Photos 2&3). -
Towards a Mitogenomic Phylogeny of Lepidoptera ⇑ Martijn J.T.N
Molecular Phylogenetics and Evolution 79 (2014) 169–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a mitogenomic phylogeny of Lepidoptera ⇑ Martijn J.T.N. Timmermans a,b, , David C. Lees c, Thomas J. Simonsen a a Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom b Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom c Department of Zoology, Cambridge University, Downing Street CB2 3EJ, United Kingdom article info abstract Article history: The backbone phylogeny of Lepidoptera remains unresolved, despite strenuous recent morphological and Received 13 January 2014 molecular efforts. Molecular studies have focused on nuclear protein coding genes, sometimes adding a Revised 11 May 2014 single mitochondrial gene. Recent advances in sequencing technology have, however, made acquisition of Accepted 26 May 2014 entire mitochondrial genomes both practical and economically viable. Prior phylogenetic studies utilised Available online 6 June 2014 just eight of 43 currently recognised lepidopteran superfamilies. Here, we add 23 full and six partial mitochondrial genomes (comprising 22 superfamilies of which 16 are newly represented) to those Keywords: publically available for a total of 24 superfamilies and ask whether such a sample can resolve deeper tRNA rearrangement lepidopteran phylogeny. Using recoded datasets we obtain topologies that are highly congruent with Ditrysia Illumina prior nuclear and/or morphological studies. Our study shows support for an expanded Obtectomera LR-PCR including Gelechioidea, Thyridoidea, plume moths (Alucitoidea and Pterophoroidea; possibly along with Pooled mitochondrial genome assembly Epermenioidea), Papilionoidea, Pyraloidea, Mimallonoidea and Macroheterocera.