Wayne Community College 2009-2010 Strategic Plan End-Of-Year Report Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel Corporation 2000 Annual Report
silicon is in 2000 Annual Report i n t e l .c o m i n t c . c o m Intel facts and figures Net revenues Diluted earnings per share Dollars in billions Dollars, adjusted for stock splits 35 1.6 33.7 1.51 30 29.4 1.2 26.3 25 25.1 Intel revenues 1.05 20.8 20 grew 15% in 2000, 0.97 0.86 0.8 giving us our 14th 16.2 15 0.73 consecutive year of 11.5 10 0.50 0.4 8.8 revenue growth. 0.33 0.33 5.8 5 4.8 0.12 0.16 0 0 91 92 93 94 95 9697 98 99 00 91 92 93 94 95 9697 98 99 00 Geographic breakdown of 2000 revenues Return on average stockholders’ equity Percent Percent 100 40 38.4 35.5 35.6 33.3 North America 41% Intel has 30 75 30.2 experienced strong 27.3 28.4 26.2 international growth, 21.6 20 50 with 59% of revenues 20.4 Asia-Pacific 26% outside North America in 2000. 10 25 Europe 24% 0 Japan 9% 91 92 93 94 95 9697 98 99 00 0 Capital additions to property, Stock price trading ranges by fiscal year plant and equipment † Dollars, adjusted for stock splits Dollars in millions 75 8,000 Capital invest- 6,674 ments reflect Intel’s 6,000 50 commitment to building leading-edge manu- 4,501 4,000 4,032 facturing capacity for 3,550 3,403 25 3,024 state-of-the-art 2,441 2,000 silicon products. -
A Viga T Ing R T Ificia L N Te Ll Igence
July 24, 2018 Semiconductor Get real with artificial intelligence (AI) "Seriously, do you think you could actually purchase one of my kind in Walmart, say in the next 10 years?" NTELLIGENCE I "You do?! You'd better read this report from RTIFICIAL RTIFICIAL cover to cover, and I assure you Peter is not being funny at all this time." A ■ Fantasies remain in Star Trek. Let’s talk about practical AI technologies. ■ There are practical limitations in using today’s technology to realise AI elegantly. ■ AI is to be enabled by a collaborative ecosystem, likely dominated by “gorillas”. ■ An explosion of innovations in AI is happening to enhance user experience. ■ Rewards will go to the problem solvers that have invested in R&D ahead of others. Analyst(s) AVIGATING AVIGATING Peter CHAN T (82) 2 6730 6128 E [email protected] N IMPORTANT DISCLOSURES, INCLUDING ANY REQUIRED RESEARCH CERTIFICATIONS, ARE PROVIDED AT THE Powered by END OF THIS REPORT. IF THIS REPORT IS DISTRIBUTED IN THE UNITED STATES IT IS DISTRIBUTED BY CIMB the EFA SECURITIES (USA), INC. AND IS CONSIDERED THIRD-PARTY AFFILIATED RESEARCH. Platform Navigating Artificial Intelligence Technology - Semiconductor│July 24, 2018 TABLE OF CONTENTS KEY CHARTS .......................................................................................................................... 4 Executive Summary .................................................................................................................. 5 I. From human to machine .......................................................................................................10 -
Vancouver Cross-Border Investment Guide
Claire to try illustration idea as one final cover option Vancouver Cross-Border Investment Guide Essential legal, tax and market information for cross-border investment into Vancouver, Canada Digital Download 1 Vancouver Cross-Border Contents Investment Guide Published October 2020 Why Invest in Vancouver ............................................................................1 Sectors to Watch ........................................................................................... 3 About the Vancouver Economic Commission Technology ..................................................................................................3 The Vancouver Economic Commission (VEC) serves one of the world’s fastest-growing, low- Cleantech .................................................................................................... 4 carbon economies. As the economic development agency for the city’s businesses, investors and citizens, VEC works to strengthen Vancouver’s economic future by supporting local companies, attracting high-impact investment, conducting and publishing leading-edge industry research, Media and Entertainment ............................................................................5 and promoting international trade. VEC works collaboratively to position Vancouver as a global destination for innovative, creative, diverse and sustainable development. Life Sciences ............................................................................................... 6 VEC respectfully acknowledges that it is located -
Intel Corporation Annual Report 1999
clients networking and communications intel.com 1999 annual report the building blocks of the internet economy intc.com server platforms solutions and services 29.4 30 2.25 90 2.11 26.3 1.93 25.1 1.73 20.8 20 1.45 1.50 60 16.2 1.01 11.5 10 0.75 30 8.8 0.65 0.65 High 5.8 4.8 3.9 0.31 Close 0.24 0.20 Low INTEL CORPORATION 1999 0 0 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Net revenues Diluted earnings per share Stock price trading ranges (Dollars in billions) (Dollars, adjusted for stock splits) by fiscal year (Dollars, adjusted for stock splits) 3,111 1999 facts and figures 3,000 45 2,509 Intel’s stock 38.4 2,347 35.5 35.6 price has risen 33.3 2,000 28.4 30 1,808 27.3 at a 48% 26.2 21.2 21.6 20.4 1,296 1,111 970 compound 1,000 15 780 618 517 annual growth 0 rate in the 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Research and development Return on average (Dollars in millions, excluding purchased last 10 years. stockholders’ equity in-process research and development) (Percent) 9.76 4,501 9 Japan 4,500 7% 4,032 7.05 3,550 3,403 3,024 5.93 6 Asia- 3,000 Pacific North 5.14 23% America 2,441 43% 1,9 33 3.69 2.80 3 1,500 1,228 2.24 Machinery 948 & equipment 1.63 1.35 Europe 680 1.12 27% Land, buildings & improvements 0 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Book value per share Geographic breakdown of 1999 revenues Capital additions to property, at year-end (Percent) plant and equipment† (Dollars, adjusted for stock splits) (Dollars in millions) Past performance does not guarantee future results. -
(12) United States Patent (10) Patent No.: US 7,020,893 B2 Connelly (45) Date of Patent: Mar
US007020893B2 (12) United States Patent (10) Patent No.: US 7,020,893 B2 Connelly (45) Date of Patent: Mar. 28, 2006 (54) METHOD AND APPARATUS FOR 5,945,988 A 8, 1999 Williams et al. CONTINUOUSLY AND 5,977.964. A 11/1999 Williams et al. OPPORTUNISTICALLY DRIVING AN 5.991,841 A 11/1999 Gafken et al. OPTIMIAL BROADCAST SCHEDULE BASED 6,002,393 A 12/1999 Hite et al. ON MOST RECENT CLIENT DEMAND FEEDBACK FROMA DISTRIBUTED SET OF (Continued) BROADCAST CLIENTS FOREIGN PATENT DOCUMENTS (75) Inventor: Jay H. Connelly, Portland, OR (US) WO WO 99,65237 12/1999 (73) Assignee: Intel Corporation, Santa Clara, CA (Continued) (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Intel: Intel Architecture Labs. Internet and Broadcast: The patent is extended or adjusted under 35 Key To Digital Convergence. Utilizing Digital Technology U.S.C. 154(b) by 882 days. to Meet Audience Demand, 2000, pp. 1-4. (21) Appl. No.: 09/882,487 (Continued) Filed: Jun. 15, 2001 Primary Examiner Ngoc Vu (22) (74) Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & (65) Prior Publication Data Zafman LLP US 20O2/O194598 A1 Dec. 19, 2002 (57) ABSTRACT (51) Int. C. HO)4N 7/173 (2006.01) Abroadcast method and system for continuously and oppor (52) U.S. Cl. ............................ 725/97; 725/91. 725/95; tunistically driving an optimal broadcast schedule based on 725/114; 725/121 most recent client demand feedback from a distributed set of (58) Field of Classification Search .................. 725/95, broadcast clients. The broadcast system includes an opera 725/97, 98, 105,109, 118, 121, 46,91, 92, tion center that broadcasts meta-data to a plurality of client 725/114, 120 systems. -
Intel Brings Home Top Awards, Recognition During CES 2016
January 11, 2016 Intel Brings Home Top Awards, Recognition during CES 2016 Intel Technologies, Products and Partners Win Best Drone, Best Wearable and More SANTA CLARA, Calif.--(BUSINESS WIRE)-- At CES 2016 last week, Intel Corporation announced innovative technologies and collaborations aimed at delivering amazing experiences throughout daily life. Many of these innovations, ranging from unmanned aerial vehicles (UAVs) and wearables to new PCs and tablets, received an array of prestigious awards and recognition. This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20160111006536/en/ For example, Intel's leadership to integrate human-like senses into technology was recognized with various awards. Engadget, PC Magazine, The Verge and Videomaker named the Intel® Atom™ processor- powered Yuneec Typhoon H* the best drone of CES 2016. With Intel® RealSense™ technology, the Yuneec Typhoon H is Intel technologies, products and partners received top awards during last capable of collision week's CES 2016. Clockwise from upper left: Engadget, PC Magazine and avoidance, has a Videomaker named the Intel® Atom™ processor-powered Yuneec Typhoon “follow-me” feature, H with Intel® RealSense™ technology the best drone of CES 2016. Engadget recognized the Empire EVS*, based on Recon's Snow2 heads-up and a 4K display (HUD) technology, as the best wearable. Recon Instruments, an Intel camera. CNET, company, enabled Empire Paintball* to create a smart paintball mask that Gizmodo and Reuters allows users to access live tactical information with a glance. PBS, Reuters also included the and Wired included the Ninebot* Segway* robot, which is powered by an Intel drone in their best-of- Atom processor and uses Intel® RealSense™ technology, in their best-of- CES lists. -
Ownerls Manual
RECON JET Owner’s Manual Assembled in USA SAFETY INFORMATION IMPORTANT SAFETY INFORMATION READ BEFORE USING RECON JET Jet is designed to enhance your sports and fitness experience. If used improperly (e.g. when cycling without paying attention to the road), Jet may cause you to get in an accident that could result in property damage, serious injury, or death. Always pay attention to the road. Do not focus on Jet’s display and become distracted from your surroundings. Ride safe and have fun. Please read and understand these warnings before using Jet. If you have any questions about how to use Jet safely, contact Recon Customer Support at [email protected], or call us at 1.877.642.2486. Support hours are 6:00am to 5:30pm PST, 7 days a week. 1. Don’t get distracted. Keep your eyes on the road. Jet’s display sits just below your right eye, but that does not mean you can stare at it and still see everything on the road. Focusing on the display may cause you to miss cars, road debris, and other hazards, which may reduce or eliminate your ability to avoid an accident. Jet’s display and the information delivered on it are designed for quick access. Glance at Jet’s display quickly, in the same way you would glance at your car’s dashboard or rearview mirror, and do so only when you are sure that you are safe from traffic and other hazards. Jet displays different types of information than your cycling computer or other fitness tracking devices. -
Design, Modeling, and Analysis of Visual Mimo Communication
DESIGN, MODELING, AND ANALYSIS OF VISUAL MIMO COMMUNICATION By ASHWIN ASHOK A Dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Electrical and Computer Engineering written under the direction of Dr. Marco O. Gruteser, Dr. Narayan B. Mandayam and Dr. Kristin J. Dana and approved by New Brunswick, New Jersey October, 2014 c 2014 Ashwin Ashok ALL RIGHTS RESERVED ABSTRACT OF THE DISSERTATION Design, Modeling, and Analysis of Visual MIMO Communication By ASHWIN ASHOK Dissertation Director: Dr. Marco O. Gruteser, Dr. Narayan B. Mandayam and Dr. Kristin J. Dana Today's pervasive devices are increasingly being integrated with light emitting diode (LED) arrays, that serve the dual purpose of illumination and signage, and photo- receptor arrays in the form of pixel elements in a camera. The ubiquitous use of light emitting arrays (LEA) and cameras in today's world calls for building novel systems and applications where such light emitting arrays can communicate information to cameras. This thesis presents the design, modeling and analysis of a novel concept called visual MIMO (multiple-input multiple-output) where cameras are used for communication. In visual MIMO, information transmitted from light emitting arrays are received through the optical wireless channel and decoded by a camera receiver. The paradigm shift in visual MIMO is the use of digital image analysis and computer vision techniques to aid in the demodulation of information, contrary to the direct processing of electrical signals as in traditional radio-frequency (RF) communication. -
Field Service Support with Google Glass and Webrtc
Field Service Support with Google Glass and WebRTC Support av Fälttekniker med Google Glass och WebRTC PATRIK OLDSBERG Examensarbete inom Datorteknik, Grundnivå, 15 hp Handledare på KTH: Reine Bergström Examinator: Ibrahim Orhan TRITA-STH 2014:68 KTH Skolan för Teknik och Hälsa 136 40 Handen, Sverige Abstract The Internet is dramatically changing the way we com- municate, and it is becoming increasingly important for communication services to adapt to context in which they are used. The goal of this thesis was to research how Google Glass and WebRTC can be used to create a communi- cation system tailored for field service support. A prototype was created where an expert is able to provide guidance for a field technician who is wearing Google Glass. A live video feed is sent from Glass to the expert from which the expert can select individual images. When a still image is selected it is displayed to the technician through Glass, and the expert is able to provide instructions using real time annotations. An algorithm that divides the selected image into segments was implemented using WebGL. This made it possible for the expert to highlight objects in the image by clicking on them. The thesis also investigates different options for ac- cessing the hardware video encoder on Google Glass. Sammanfattning Internet har dramatiskt ändrat hur vi kommunicerar, och det blir allt viktigare för kommunikationssystem att kunna anpassa sig till kontexten som de används i. Målet med det här examensarbetet var att undersöka hur Google Glass och WebRTC kan användas för att skapa ett kommunikationssystem som är skräddarsytt för support av fälttekniker. -
Ultra-Wideband Research and Implementation
UltraWideband Research and Implementation Senior Capstone Project 2007 Final Report by: Jarrod Cook Nathan Gove Project Advisors: Dr. Brian Huggins Dr. In Soo Ahn Dr. Prasad Shastry Abstract Ultra‐wideband (UWB) is a wireless transmission standard that will soon revolutionize consumer electronics. UWB is interesting because of its inherent low power consumption, high data rates of up to 480 Mbps, and large spatial capacity1. Furthermore, the power spectral density is low enough to prevent interference with other wireless services. This new standard has recently been approved by the FCC for unlicensed use and has been gaining interest throughout the consumer electronics industry. The main goal of the project is to increase interest in UWB technology, and to explore its usefulness. The history and benefits of UWB will be discussed, followed by the project goals, implementation, and results. Texas Instruments DSP platforms were used in conjunction with Simulink and Code Composter Studio to implement the scaled‐down baseband modulation scheme. Also, RF microwave components were donated from Hittite Corporation to perform quadrature modulation and up conversion to a frequency of 3.4 GHz. 1 Spatial capacity is defined as bits/sec/square‐meter. UWB is projected at having 6 devices working simultaneously within a 10 m range [16]. ii. Acknowledgements There are some people that need to be acknowledged for their work with this project. They include, but are not limited to: • Luke Vercimak and Karl Weyeneth for work on their 2006 Senior Capstone Project, Software Defined Radio. • Dr. Brian Huggins, Dr. In Soo Ahn and Dr. Prasad Shastry for advising, guidance and general encouragement throughout. -
Microprocessor Packaging (Intel)
MicroprocessorMicroprocessor PackagingPackaging The Key Link in the Chain Koushik Banerjee Technical Advisor Assembly Technology Development Intel Corporation 1 MicroprocessorsMicroprocessors 1971 2001 2 GlobalGlobal PackagingPackaging R&DR&D China Shanghai Philippines Cavite Arizona Chandler Malaysia Penang VirtualVirtual ATDATD 3 MainMain R&DR&D facilityfacility inin Chandler,Chandler, AZAZ 4 Computing needs driving complexity First to introduce organic in mainstream CPUs First to introduce flip chip in Intel 486TM Pentium®mainstreamPentium® Pro Pentium® CPUs II Pentium® III Pentium® 4 Itanium® Processor Processor Processor Processor Processor Processor Processor 25 MHz 1.0+ GHz Ceramic Wire-bond To Organic To Flip Chip 5 LookingLooking aheadahead …… ComplexityComplexity andand ChallengesChallenges toto supportsupport Moore’sMoore’s LawLaw 1. Silicon to package interconnect 2. Within package interconnect 3. Power management 4. Adding more functionality GoalGoal :: BringBring technologytechnology innovationinnovation intointo HighHigh volumevolume manufacturingmanufacturing atat aa LOWLOW COSTCOST 6 SiliconSilicon ?? PackagePackage RelationshipRelationship AnatomyAnatomy 101101 Silicon Processor: The “brain” of the computer (generates instructions) Packaging: The rest of the body (Communicates instructions to the outside world, adds protection) NoNo PackagePackage == NoNo ProductProduct !! Great Packaging = Great Products !! Great Packaging = Great Products !! 7 TheThe KeyKey LinkLink inin thethe ChainChain OpportunityOpportunity Transistor-to-Transistor -
Configuring and Scheduling an Eager-Writing Disk Array
Configuring and Scheduling an Eager-Writing Disk Array for a Transaction Processing Workload Chi Zhang∗ Xiang Yu∗ Arvind Krishnamurthyy Randolph Y. Wang∗ Abstract cult challenges to storage systems than office work- loads. These applications exhibit little locality or Transaction processing applications such as those sequentiality; a large percentage of the I/O requests exemplified by the TPC-C benchmark are among the are writes, many of which are synchronous; and most demanding I/O applications for conventional there may be little idle time. storage systems. Two complementary techniques exist to improve the performance of these systems. Traditional techniques that work well for office Eager-writing allows the free block that is closest to workloads tend to be less effective for these transac- a disk head to be selected for servicing a write re- tion processing applications. Memory caching pro- quest, and mirroring allows the closest replica to be vides little relief in the presence of poor locality and selected for servicing a read request. Applied indi- a small read-to-write ratio. As disk areal density im- vidually, the effectiveness of each of these techniques proves at 60-100% annually [9], as memory density is limited. An eager-writing disk array (EW-Array) improves at only 40% per year, and as the amount combines these two complementary techniques. In of data in transaction processing systems continues such a system, eager-writing enables low-cost replica to grow, one can expect little improvement in cache propagation so that the system can provide excel- hit rates in the near future. Delayed write tech- lent performance for both read and write operations niques become less applicable in the presence of a while maintaining a high degree of reliability.