A Thesis Entitled Corona Induced Electrohydrodynamics: A
Total Page:16
File Type:pdf, Size:1020Kb
A Thesis entitled Corona Induced Electrohydrodynamics: A Contactless Method to Manipulate Liquids by Md Ashraful Haque Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering ___________________________________________ Dr. Hossein Sojoudi, Committee Chair ___________________________________________ Dr. Sorin Cioc, Committee Member ___________________________________________ Dr. Ana C. Alba Rubio, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo December 2018 Select copyright license. 2018 Md Ashraful Haque This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Corona Induced Electrohydrodynamics: A Contactless Method to Manipulate Liquids by Md Ashraful Haque Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering The University of Toledo December 2018 The dynamics of dielectric liquid and liquid drops suspended in another fluid medium subjected to electric field has captivated researchers ever since electro-fluid dynamics was introduced in 17th century. While there has been much work in uniform electric field, recent trends have moved towards the study of how non-uniformity of electric field would induce the motion. The purpose of this thesis is to investigate the response of dielectric liquids and droplets under an ionization technique creating non-uniform electric field. The method applied is corona discharge whose electrical parameters are first studied to understand the behavior of the source impulse. We advocate for the method for it is contactless and enlighten the area of applications considering the limitations of other methods. While studying the behavior of droplet to this electrical signal, their physical changes are tracked down to relate its intrinsic property to this extrinsic discharge phenomena. The dynamic behavior is modeled with the insights of spring-damper analogy and this model is found to capture the different states of deformation while droplet move from one place to other. One distinct feature of this works is to explain how the combined effects of electrophoresis and di-electrophoresis induce the motion and an analogy to iii differentiate them serves as valuable inputs to carry out electrohydrodynamic(EHD) research. We configured our geometry to address the applicability of this technique to drive very viscous liquids in attempts to see the potentials of the technique being used as EHD pumping. Apart from experiments, we have carried numeric simulations to conclude on the coupled interactions of Electro-Fluid dynamics. iv Acknowledgements I am ever grateful to my family for their great sacrifices. My research advisor, Dr. Hossein Sojoudi, will carry a big influence in my days ahead who reshaped my entire journey to the process of graduation. And last but not the least are my co-workers in research lab and friends. They are the true inspiration of this work. v Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................ iv Table of Contents ............................................................................................................... vi List of Tables .....................................................................................................................x List of Figures .................................................................................................................... xi List of Abbreviations ....................................................................................................... xiii List of Symbols ................................................................................................................ xiv 1 Fundaments of Electrohydrodynamics ....................................................................1 1.1 Introduction ........................................................................................................1 1.2 Maxwell’s Equation: Foundation of EHD .........................................................3 1.2.1 Maxwell’s Equation .............................................................................3 1.2.2 Non-dimensionalizing ..........................................................................6 1.2.3 Classification of EHD based on Maxwell’s Equation .........................7 1.2.3.1 Electro and Magnetostatics ..................................................7 1.2.3.2 Stationary Fields (DC current) .............................................8 1.2.3.3 Quasi- Stationary Fields (AC current) .................................8 1.2.3.4 Rapidly changing EM (EM waves)......................................9 1.2.4 Electro-quasistatics of moving fluid ...................................................9 1.3 Electrical conduction in liquids .......................................................................11 vi 1.3.1 Conduction……. ...............................................................................11 1.3.2 Transport of charge carriers ..............................................................12 1.3.3 Ion mobilities in liquids and gases ...................................................13 1.3.4 Ion injection …. ................................................................................15 1.4 Polarization of Dielectrics....................................................................................16 1.4.1 Interfacial Polarization .......................................................................17 2 Corona discharge phenomena ................................................................................19 2.1 Plasma .......................................................................................................19 2.2 Ionization of air ................................................................................................22 2.2.1 Thermal ionization .............................................................................22 2.2.2 Photo ionization .................................................................................23 2.2.3 Particle impact ionization ..................................................................23 2.2.4 Nuclear emission ................................................................................24 2.2.5 Electric field ionization ......................................................................24 2.3 Corona Discharge...............................................................................................25 2.3.1 A brief history ....................................................................................25 2.3.2 Mechanism .........................................................................................26 2.3.3 Corona properties ...............................................................................28 2.3.4 Glow discharge vs Arc discharge vs Corona discharge .....................31 2.3.5 Application of corona discharge ........................................................33 2.3.6 Corona discharge research .................................................................34 3 Dielectrophoretic motion of conducting droplet in low conducting medium ........39 vii 3.1 Introduction ......................................................................................................40 3.2 Experimental Set Up ........................................................................................42 3.2.1 Sequential voltage source ..................................................................42 3.2.2 Electrode device .................................................................................43 3.2.3 Experimental procedure .....................................................................43 3.3 Mathematical modeling ...................................................................................46 3.4 Results and Discussions ...................................................................................50 3.4.1 Generation of non-uniform E & parameters effect ............................50 3.4.2 Electroquasistatics of sessile droplet & deformation pattern .............53 3.4.3 Electroquasistatics of moving droplet & deformation effect .............56 3.4.4 Analogy of contact charging effect from spring-damper model ........61 3.4.5 Statistical analysis of random droplet motion in electroconvection ..69 3.4.6 Rayleigh-Plateau instability of dielectric-dielectric system ..............72 3.4.7 Translation of droplet in multiple electrode.......................................74 3.5 Repeatability of experiment data .....................................................................76 3.6 Conclusions ......................................................................................................76 4 Instability of DL under Atmospheric Air Corona ..................................................78 4.1 Introduction ......................................................................................................79 4.2 Bulk instability .................................................................................................83 viii 4.2.1 Experimental design and methodology