A Thesis Entitled Corona Induced Electrohydrodynamics: A

Total Page:16

File Type:pdf, Size:1020Kb

A Thesis Entitled Corona Induced Electrohydrodynamics: A A Thesis entitled Corona Induced Electrohydrodynamics: A Contactless Method to Manipulate Liquids by Md Ashraful Haque Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering ___________________________________________ Dr. Hossein Sojoudi, Committee Chair ___________________________________________ Dr. Sorin Cioc, Committee Member ___________________________________________ Dr. Ana C. Alba Rubio, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo December 2018 Select copyright license. 2018 Md Ashraful Haque This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Corona Induced Electrohydrodynamics: A Contactless Method to Manipulate Liquids by Md Ashraful Haque Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering The University of Toledo December 2018 The dynamics of dielectric liquid and liquid drops suspended in another fluid medium subjected to electric field has captivated researchers ever since electro-fluid dynamics was introduced in 17th century. While there has been much work in uniform electric field, recent trends have moved towards the study of how non-uniformity of electric field would induce the motion. The purpose of this thesis is to investigate the response of dielectric liquids and droplets under an ionization technique creating non-uniform electric field. The method applied is corona discharge whose electrical parameters are first studied to understand the behavior of the source impulse. We advocate for the method for it is contactless and enlighten the area of applications considering the limitations of other methods. While studying the behavior of droplet to this electrical signal, their physical changes are tracked down to relate its intrinsic property to this extrinsic discharge phenomena. The dynamic behavior is modeled with the insights of spring-damper analogy and this model is found to capture the different states of deformation while droplet move from one place to other. One distinct feature of this works is to explain how the combined effects of electrophoresis and di-electrophoresis induce the motion and an analogy to iii differentiate them serves as valuable inputs to carry out electrohydrodynamic(EHD) research. We configured our geometry to address the applicability of this technique to drive very viscous liquids in attempts to see the potentials of the technique being used as EHD pumping. Apart from experiments, we have carried numeric simulations to conclude on the coupled interactions of Electro-Fluid dynamics. iv Acknowledgements I am ever grateful to my family for their great sacrifices. My research advisor, Dr. Hossein Sojoudi, will carry a big influence in my days ahead who reshaped my entire journey to the process of graduation. And last but not the least are my co-workers in research lab and friends. They are the true inspiration of this work. v Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................ iv Table of Contents ............................................................................................................... vi List of Tables .....................................................................................................................x List of Figures .................................................................................................................... xi List of Abbreviations ....................................................................................................... xiii List of Symbols ................................................................................................................ xiv 1 Fundaments of Electrohydrodynamics ....................................................................1 1.1 Introduction ........................................................................................................1 1.2 Maxwell’s Equation: Foundation of EHD .........................................................3 1.2.1 Maxwell’s Equation .............................................................................3 1.2.2 Non-dimensionalizing ..........................................................................6 1.2.3 Classification of EHD based on Maxwell’s Equation .........................7 1.2.3.1 Electro and Magnetostatics ..................................................7 1.2.3.2 Stationary Fields (DC current) .............................................8 1.2.3.3 Quasi- Stationary Fields (AC current) .................................8 1.2.3.4 Rapidly changing EM (EM waves)......................................9 1.2.4 Electro-quasistatics of moving fluid ...................................................9 1.3 Electrical conduction in liquids .......................................................................11 vi 1.3.1 Conduction……. ...............................................................................11 1.3.2 Transport of charge carriers ..............................................................12 1.3.3 Ion mobilities in liquids and gases ...................................................13 1.3.4 Ion injection …. ................................................................................15 1.4 Polarization of Dielectrics....................................................................................16 1.4.1 Interfacial Polarization .......................................................................17 2 Corona discharge phenomena ................................................................................19 2.1 Plasma .......................................................................................................19 2.2 Ionization of air ................................................................................................22 2.2.1 Thermal ionization .............................................................................22 2.2.2 Photo ionization .................................................................................23 2.2.3 Particle impact ionization ..................................................................23 2.2.4 Nuclear emission ................................................................................24 2.2.5 Electric field ionization ......................................................................24 2.3 Corona Discharge...............................................................................................25 2.3.1 A brief history ....................................................................................25 2.3.2 Mechanism .........................................................................................26 2.3.3 Corona properties ...............................................................................28 2.3.4 Glow discharge vs Arc discharge vs Corona discharge .....................31 2.3.5 Application of corona discharge ........................................................33 2.3.6 Corona discharge research .................................................................34 3 Dielectrophoretic motion of conducting droplet in low conducting medium ........39 vii 3.1 Introduction ......................................................................................................40 3.2 Experimental Set Up ........................................................................................42 3.2.1 Sequential voltage source ..................................................................42 3.2.2 Electrode device .................................................................................43 3.2.3 Experimental procedure .....................................................................43 3.3 Mathematical modeling ...................................................................................46 3.4 Results and Discussions ...................................................................................50 3.4.1 Generation of non-uniform E & parameters effect ............................50 3.4.2 Electroquasistatics of sessile droplet & deformation pattern .............53 3.4.3 Electroquasistatics of moving droplet & deformation effect .............56 3.4.4 Analogy of contact charging effect from spring-damper model ........61 3.4.5 Statistical analysis of random droplet motion in electroconvection ..69 3.4.6 Rayleigh-Plateau instability of dielectric-dielectric system ..............72 3.4.7 Translation of droplet in multiple electrode.......................................74 3.5 Repeatability of experiment data .....................................................................76 3.6 Conclusions ......................................................................................................76 4 Instability of DL under Atmospheric Air Corona ..................................................78 4.1 Introduction ......................................................................................................79 4.2 Bulk instability .................................................................................................83 viii 4.2.1 Experimental design and methodology
Recommended publications
  • Experimental and Computational Analysis of Bubble Generation Combining Oscillating Electric Fields and Microfluidics
    Experimental and computational analysis of bubble generation combining oscillating electric fields and microfluidics A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Anjana Kothandaraman Supervised by: Professor Mohan Edirisinghe And Professor Yiannis Ventikos Department of Mechanical Engineering University College London Torrington Place, London WC1E 7JE United Kingdom December, 2017 1 | P a g e Declaration I, Anjana Kothandaraman, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. -------------------------------------- Anjana Kothandaraman 2 | P a g e Abstract Microbubbles generated by microfluidic techniques have gained substantial interest in various fields such as food engineering, biosensors and the biomedical field. Recently, T-Junction geometries have been utilised for this purpose due to the exquisite control they offer over the processing parameters. However, this only relies on pressure driven flows; therefore bubble size reduction is limited, especially for very viscous solutions. The idea of combining microfluidics with electrohydrodynamics has recently been investigated using DC fields, however corona discharge was recorded at very high voltages with detrimental effects on the bubble size and stability. In order to overcome the aforementioned limitation, a novel set-up to superimpose an AC oscillation on a DC field is presented in this work with the aim of introducing additional parameters such as frequency, AC voltage and waveform type to further control bubble size, capitalising on well documented bubble resonance phenomena and properties. Firstly, the effect of applied AC voltage magnitude and the applied frequency were investigated.
    [Show full text]
  • Plasma Physics 1 APPH E6101x Columbia University Fall, 2015
    Lecture22: Atmospheric Plasma Plasma Physics 1 APPH E6101x Columbia University Fall, 2015 1 http://www.plasmatreat.com/company/about-us.html 2 http://www.tantec.com 3 http://www.tantec.com/atmospheric-plasma-improved-features.html 4 5 6 PHYSICS OF PLASMAS 22, 121901 (2015) Preface to Special Topic: Plasmas for Medical Applications Michael Keidar1,a) and Eric Robert2 1Mechanical and Aerospace Engineering, Department of Neurological Surgery, The George Washington University, Washington, DC 20052, USA 2GREMI, CNRS/Universite d’Orleans, 45067 Orleans Cedex 2, France (Received 30 June 2015; accepted 2 July 2015; published online 28 October 2015) Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933406] There is convincing evidence that cold atmospheric topic section, there are several papers dedicated to plasma plasmas (CAP) interaction with tissue allows targeted cell re- diagnostics. moval without necrosis, i.e., cell disruption. In fact, it was Shashurin and Keidar presented a mini review of diag- determined that CAP affects cells via a programmable pro- nostic approaches for the low-frequency atmospheric plasma cess called apoptosis.1–3 Apoptosis is a multi-step process jets.
    [Show full text]
  • Lecture 4. Electrokinetics and Electrohydrodynamics
    Lecture 4. Electrokinetics and Electrohydrodynamics Electrophoresis Electroosmosis Capillary Electrophoresis (CE) DEP preconcentrator Dielectrophoresis (DEP) AC Electroosmosis Electrophoresis • An ion with charge q in an electric field E moves toward opposite electrode due to Coulombic force. A steady-state speed is reached when the accelerating force equals the frictional force generated by the medium. VDC - - Medium Anode + + Cathode FE = qE FFriction = f ⋅uE = 6πηr ⋅uE q u q u = ⋅ E µ = E = E 6πηr E E 6πηr Electrophoretic mobility is a function of viscosity and charge to radius ratio. Applications of Electrophoresis • Many important biological molecules such as amino acids, peptides, proteins, nucleotides, and nucleic acids, possess ionisable groups (COOH, NH2, phosphates) and, therefore, at any given pH, exist in solution as electically charged species either as cations (+) or anions (-). DNA is negatively charged because the phosphates that form the sugar-phosphate backbone of a DNA molecule have a negative charge. • Depending on the nature of the net charge, the charged particles will migrate either to the cathode or to the anode at different rates. Electrophoresis has been applied to a variety of analytical separation problems. – Amino acids – Peptides, proteins (enzymes, hormones, antibodies) – Nucleic acids (DNA, RNA), nucleotides – Drugs, vitamins, carbohydrates – Inorganic cations and anions Gel Electrophoresis • Gel electrophoresis is a separation technique widely used for the separation of nucleic acids and proteins. The separation depends upon electrophoresis and filtering effect by gel (molecular sieve). Under electric field, charged macromolecules are forced to move through the gel with pores. • Their rates of migration depend on the field strength, size and shape of the molecules, hydrophobicity of the samples, and on the ionic strength, and pH, temperature of the buffer in which the molecules are moving.
    [Show full text]
  • Download (PDF)
    Nanotechnology Education - Engineering a better future NNCI.net Teacher’s Guide To See or Not to See? Hydrophobic and Hydrophilic Surfaces Grade Level: Middle & high Summary: This activity can be school completed as a separate one or in conjunction with the lesson Subject area(s): Physical Superhydrophobicexpialidocious: science & Chemistry Learning about hydrophobic surfaces found at: Time required: (2) 50 https://www.nnci.net/node/5895. minutes classes The activity is a visual demonstration of the difference between hydrophobic and hydrophilic surfaces. Using a polystyrene Learning objectives: surface (petri dish) and a modified Tesla coil, you can chemically Through observation and alter the non-masked surface to become hydrophilic. Students experimentation, students will learn that we can chemically change the surface of a will understand how the material on the nano level from a hydrophobic to hydrophilic surface of a material can surface. The activity helps students learn that how a material be chemically altered. behaves on the macroscale is affected by its structure on the nanoscale. The activity is adapted from Kim et. al’s 2012 article in the Journal of Chemical Education (see references). Background Information: Teacher Background: Commercial products have frequently taken their inspiration from nature. For example, Velcro® resulted from a Swiss engineer, George Mestral, walking in the woods and wondering why burdock seeds stuck to his dog and his coat. Other bio-inspired products include adhesives, waterproof materials, and solar cells among many others. Scientists often look at nature to get ideas and designs for products that can help us. We call this study of nature biomimetics (see Resource section for further information).
    [Show full text]
  • Electrokinetics and Electrohydrodynamics in Microsystems Invited Lecturers
    TIME TABLE TIME Monday Tuesday Wednesday Thursday Friday June 22 June 23 June 24 June 25 June 26 9.00 - 9.45 Registration Morgan Mugele Bazant Chen 9.45 - 10.30 Ramos Mugele Bazant Green Chen 11.00 - 11.45 Morgan Bazant Green Chen Ramos 11.45 - 12.30 Mugele Green Chen Ramos Ramos 14.30 - 15.15 Bazant Chen Ramos Morgan 15.15 - 16.00 Green Ramos Morgan Mugele 16.30 - 17.15 Chen Green Mugele Bazant 17.15 - 18.00 Morgan e-mail: [email protected] fax +390432248550 tel. +390432248511 (6lines) 33100 Udine(Italy) -PiazzaGaribaldi18 Palazzo delTorso CISM For furtherinformationpleasecontact: our website,orcanbemaileduponrequest. Information about travel and accommodation is available on web site: e-mail: postmaster[at]daad.de tel. +49(228)882-0 DAAD, Kennedyallee50,53175Bonn support toGermanstudents.Pleasecontact: The Deutscher Akademischer Austausch Dienst (DAAD) offers to applicantsfromcountriesthatsponsorCISM. the institute cannot provide funding. Preference will be given by the head of the department or a supervisor confirming that recommendation of letter a and curriculum applicant's the with by Secretariat CISM to sent be should quests offered board and/or lodging in a reasonably priced hotel. Re centres who are not supported by their own institutions can be research and universitites from participants of number limited A The registrationfeeis600,00Euro. our secretariat. pants. If you need assistance for registration please contact A message of confirmationwill be sent to accepted partici our website: through on-line sent be should forms Application course. the of beginning the before month one least at apply must Applicants ADMISSION ANDACCOMMODATION http://www.daad.de/de/kontakt.html http://www.cism.it orbypost.
    [Show full text]
  • Terminology for Electrostatic Precipitators
    PUBLICATION ICAC-EP-1 NOVEMBER 2000 _____________________________________________________ TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS Publication ICAC-EP-1 Date Adopted: November 2000 ICAC The Institute of Clean Air Companies (ICAC), the nonprofit national association of companies that supply stationary source air pollution monitoring and control systems, equipment, and services, was formed in 1960 to promote the industry and encourage improvement of engineering and technical standards. The Institute's mission is to assure a strong and workable air quality policy that promotes public health, environmental quality, and industrial progress. As the representative of the air pollution control industry, the Institute seeks to evaluate and respond to regulatory initiatives and establish technical standards to the benefit of all. ICAC Copyright © ICAC, Inc., 2000. All rights reserved. 1660 L Street, NW Washington, DC 20036-5603 Telephone: 202.457.0911 Facsimile: 202.331.1388 Website: www.icac.com Summary: This document provides definitions of key common terms related to electrostatic precipitators and their operation in the U.S. marketplace, and includes illustrations of common precipitators. The terminology is arranged by major system component areas, and concludes with a section on general and miscellaneous electrostatic precipitator terms. This document is written by and for members of the air pollution control industry as well as for the regulatory community and others seeking to better understand this industry and this particular air pollution control technology. This document is part of an ICAC technical standards series that addresses electrostatic precipitators (see ICAC publications list). As appropriate, terminology specific to dry and wet electrostatic precipitators is listed and defined.
    [Show full text]
  • Study of the Corona Discharge Pheno- Menon for Application in Pathogen and Narcotic Detection in Aerosol
    Study of the corona discharge pheno- menon for application in pathogen and narcotic detection in aerosol GLEB LOBOV Degree project in Microsystem Technology Second level, 30 HEC Stockholm, Sweden 2012 XR-EE-MST 2012-001 Study of the corona discharge phenomenon for application in pathogen and narcotic detection in aerosol Master Thesis by Gleb Lobov Supervisors: Gaspard Pardon, Niklas Sandström Examiner: Wouter van der Wijngaart Microsystem Technology KTH Royal Institute of Technology Stockholm, Sweden January 2012 3 4 Abstract Within this master thesis work, a novel application of a corona discharge is presented. The phenomenon of an electro-hydro-dynamic (EHD) flow is used for the precipitation of airborne particles onto a restricted surface of a non-coronizing electrode. The non-coronizing electrode surface can be replaced by a liquid interface, by which aerosol particles can be transferred from the airflow into a liquid solution, allowing for further analysis. Due to a small volume of the liquid container, the increased concentration of trapped particles will potentially enhance the resolution of the detection system. Aerosol droplets can originate from a human breath, which opens the possibility to utilize the system for narcotics or viruses detection. In this work, effort was laid on adapting a simulation model and an experimental set-up to the concept of the airborne particle trapping. Electrical measurements were conducted to characterize the set-up, through which the main limitations of the input parameters of the system could be extracted. Moreover, an approach for the determination of the upper limit of the applicable voltage was introduced. The data collected was used to build general conclusions and recommendations, relevant to the further research on this topic.
    [Show full text]
  • Electrohydrodynamic Settling of Drop in Uniform Electric Field at Low and Moderate Reynolds Numbers
    Electrohydrodynamic settling of drop in uniform electric field at low and moderate Reynolds numbers Nalinikanta Behera1, Shubhadeep Mandal2 and Suman Chakraborty1,a 1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,West Bengal- 721302, India 2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 G¨ottingen, Germany Dynamics of a liquid drop falling through a quiescent medium of another liquid is investigated in external uniform electric field. The electrohydrodynamics of a drop is governed by inherent deformability of the drop (defined by capillary number), the electric field strength (defined by Masson number) and the surface charge convection (quantified by electric Reynolds number). Surface charge convection generates nonlinearilty in a electrohydrodynamics problem by coupling the electric field and flow field. In Stokes limit, most existing theoretical models either considered weak charge convection or weak electric field to solve the problem. In the present work, gravitational settling of the drop is investigated analytically and numerically in Stokes limit considering significant electric field strength and surface charge convection. Drop deformation accurate upto higher order is calculated analytically in small deformation regime. Our theoretical results show excellent agreement with the numerical and shows improvement over previous theoretical models. For drops falling with moderate Reynolds number, the effect of Masson number on transient drop dynamics is studied for (i) perfect dielectric drop in perfect dielectric medium (ii) leaky dielectric drop in the leaky dielectric medium. For the latter case transient deformation and velocity obtained for significant charge convection is compared with that of absence in charge convection which is the novelty of our study.
    [Show full text]
  • (Ehd) Pumping of Liquid Nitrogen –
    ABSTRACT Title of Dissertation: ELECTROHYDRODYNAMICS (EHD) PUMPING OF LIQUID NITROGEN – APPLICATION TO SPOT CRYOGENIC COOLING OF SENSORS AND DETECTORS Mihai Rada, Doctor of Philosophy, 2004 Dissertation directed by: Professor Michael M. Ohadi Department of Mechanical Engineering Superconducting electronics require cryogenic conditions as well as certain conventional electronic applications exhibit better performance at low temperatures. A cryogenic operating environment ensures increased operating speeds and improves the signal-to-noise ratio and the bandwidth of analog devices and sensors, while also ensuring reduced aging effect. Most of these applications require modest power dissipation capabilities while having stricter requirements on the spatial and temporal temperature variations. Controlled surface cooling techniques ensure more stable and uniform temporal and spatial temperature distributions that allow better signal-to-noise ratios for sensors and elimination of hot spots for processors. EHD pumping is a promising technique that could provide pumping and mass flow rate control along the cooled surface. In this work, an ion-drag EHD pump is used to provide the pumping power necessary to ensure the cooling requirements. The present study contributes to two major areas which could provide significant improvement in electronics cooling applications. One direction concerns development of an EHD micropump, which could provide the pumping power for micro-cooling systems capable of providing more efficient and localized cooling. Using a 3M fluid, a micropump with a 50 mm gap between the emitter and collector and a saw-tooth emitter configuration at an applied voltage of about 250 V provided a pumping head of 650 Pa. For a more optimized design a combination of saw tooth emitters and a 3-D solder-bump structure should be used.
    [Show full text]
  • Electrohydrodynamics of Particles and Drops in Strong Electric Fields
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Electrohydrodynamics of Particles and Drops in Strong Electric Fields Permalink https://escholarship.org/uc/item/335049s5 Author Das, Debasish Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrohydrodynamics of Particles and Drops in Strong Electric Fields A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) by Debasish Das Committee in charge: Professor David Saintillan, Chair Professor Juan C. Lasheras Professor Bo Li Professor J´er´emiePalacci Professor Daniel M. Tartakovsky 2016 Copyright Debasish Das, 2016 All rights reserved. The Dissertation of Debasish Das is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii EPIGRAPH If you keep proving stuff that others have done, getting confidence, increasing the complexities of your solutions - for the fun of it - then one day you’ll turn around and discover that nobody actually did that one! —Richard P. Feynman iv TABLE OF CONTENTS Signature Page................................... iii Epigraph...................................... iv Table of Contents..................................v List of Figures................................... viii List of Tables....................................x Acknowledgements................................
    [Show full text]
  • The Corona Discharge
    Numerical and analytical studies of critical radius in new geometries for corona discharge in air and CO2-rich environments Jacob A. Engle, Jeremy A. Riousset Department of Physical Sciences, Center for Space and Atmospheric Research (CSAR), Embry-Riddle Aeronautical University, Daytona Beach, FL CEDAR 2017 ([email protected]) Abstract II. Model Formulation In this work, we focus on plasma discharge produced between two electrodes with a high potential Objectives Geometry Cartesian Spherical Cylindrical difference, resulting in ionization of the neutral gas particles and creating a current in the gas • Apply Paschen theory to Cartesian, 푥2 푅2 푅2 medium. This process, when done at low current and low temperature can create corona and “glow” Analytical 훼eff푑푥 = ln(푄) 훼eff푑푟 = ln(푄) 훼eff푑푟 = ln(푄) 푥1 푅1 푅1 discharges, which can be observed as a luminescent, or “glow,” emission. The parallel plate geometry spherical, and cylindrical geometries; 푥1 = 0 R2 →c; V(R2) = 0 R2 →c; V(R2) = 0 −퐵푝 used in Paschen theory is particularly well suited to model experimental laboratory scenario. V(c) = 0; V(c) = 0 • Obtain analytical expressions for critical 훼eff(퐸) = 퐴푝푒 퐸 However, it is limited in its applicability to lightning rods and power lines (Moore et al., 2000). −퐵푝 −퐵푝 푑 = 푥 − 푥 훼 (퐸) = 퐴푝푒 퐸 훼 (퐸) = 퐴푝푒 퐸 Franklin’s sharp tip and Moore et al.’s rounded tip fundamentally differ in the radius of curvature of 2 1 eff eff radius and Stoletov’s point; 휕푉 = 0: Stoletov′s point 휕푉 ′ 휕푉 ′ the upper end of the rod. Hence, we propose to expand the classic Cartesian geometry into spherical 휕푑 = 0: Stoletov s point = 0: Stoletov s point • Develop numerical models for 휕푅1 휕푅1 geometries.
    [Show full text]
  • Performance Characterization of Electrohydrodynamic Propulsion
    Performance Characterization of Electrohydrodynamic Propulsion Devices by Kento Masuyama Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2012 © Massachusetts Institute of Technology 2012. All rights reserved. Author.............................................................. Department of Aeronautics and Astronautics August 23, 2012 Certified by. Steven R.H. Barrett Assistant Professor Thesis Supervisor Accepted by . Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Performance Characterization of Electrohydrodynamic Propulsion Devices by Kento Masuyama Submitted to the Department of Aeronautics and Astronautics on August 23, 2012, in partial fulfillment of the requirements for the degree of Master of Science Abstract Partially ionized fluids can gain net momentum under an electric field, as charged par- ticles undergo momentum-transfer collisions with neutral molecules in a phenomenon termed an ionic wind. Electrohydrodynamic thrusters generate thrust by using two or more electrodes to ionize the ambient fluid and create an electric field. In this thesis, electrohydrodynamic thrusters of single- and dual-stage configurations were tested. Single-stage thrusters refer to a geometry employing one emitter electrode, an air gap of length d, and a collector electrode with large radius of curvature relative to the emitter. Dual-stage thrusters add a collinear intermediate electrode in between the emitter and collector. Single-stage thruster performance was shown to exhibit trends in agreement with the one-dimensional theory under both positive and negative DC excitations. Increasing the gap length requires a higher voltage for thrust onset, gen- erates less thrust per input voltage, generates more thrust per input current, and most importantly generates more thrust per input power.
    [Show full text]