The Electric Sense of the Skate

Total Page:16

File Type:pdf, Size:1020Kb

The Electric Sense of the Skate From Morphology to Neural Information: The Electric Sense of the Skate Marcelo Camperi1*, Timothy C. Tricas2,3, Brandon R. Brown1 1 Department of Physics, University of San Francisco, San Francisco, California, United States of America, 2 Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 3 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America Morphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.g., a prey organism). We compute the coincident electric signals that develop across an array of the skate’s electrosensors, using electrodynamics married to precise morphological measurements of sensor location, infrastructure, and vector projection. Our results demonstrate that skate morphology enhances electrosensory information. Not only could the skate locate prey using a simple population vector algorithm, but its morphology also specifically leads to quick shifts in firing rates that are well-suited to the demonstrated bandwidth of the electrosensory system. Finally, we propose electrophysiology trials to test the modeling scheme. Citation: Camperi M, Tricas TC, Brown BR (2007) From morphology to neural information: The electric sense of the skate. PLoS Comput Biol 3(6): e113. doi:10.1371/journal. pcbi.0030113 Introduction drop in apical-side potential with respect to the basal potential leads to an increased firing rate for the associated Sensor placement and arrangement are crucial for any nerves, while an increase in that potential difference leads to sensory system used to locate the distance and bearing of a an inhibited firing rate [11]. More recent measurements also stimulus source, and this is true for a variety of modalities. In delineate organ-specific and frequency-specific gain func- addition to stereo vision in much of the animal kingdom, tions [12,13]. The amplification mechanism of the sensory echolocation (e.g., the barn owl) and mechanosensory epithelium is not completely understood, but persuasive location (e.g., the sand scorpion) uses multiple sensors to models exist [11]. locate prey with requisite precision [1–3]. While previous studies have focused on the response Electrosensitive vertebrates, including monotremes (e.g., properties of single electroreceptors, few have explored the the platypus), siluriforms (e.g., the catfish), osteoglossomorphs simultaneous response of electroreceptor populations to (e.g., the knifefish), and chondrostreans (e.g., the sturgeon and biological stimuli. This aspect is especially relevant since the the paddlefish), typically possess large populations of in- pores and canals associated with the electroreceptors display dependent electrosensitive organs. Obviously, multiple or- great geometrical variation within a given organism and gans enhance signal-to-noise ratio by an increased number of among species [14]. In terms of higher processing, output simultaneous measurements since environmental electrical from principal cells in the dorsal octavolateralis nucleus signatures of biological relevance are often weak, even at (DON) of the skate hindbrain showed systematic responses to close range. However, these animals may also use the sensor oscillating dipole stimulation that were twice as strong as population to determine the location of electric sources. In responses to uniform body-wide fields [15]. Hence, it is the case of the black ghost knifefish, Apteronotus albifrons, the important to understand the coincident responses of the surface receptors simply report magnitudes of electric field, electrosensory periphery to electric stimuli to understand and the contrast of signal magnitudes across the body how central processing mechanisms integrate peripheral facilitate the location of nearby objects and the capture of receptor responses and affect behavior. prey [4,5]. Kalmijn has proposed an algorithm for elasmobranchs The elasmobranch fishes (sharks, skates, and rays) possess approaching stationary prey via the electric sense [16]. In an electrosensory system used to detect prey, possibly this model, the hunting elasmobranch simply maintains its navigate with respect to magnetic fields, and locate mates orientation with respect to the dipole field of the prey. [6–9]. The system includes hundreds or thousands of separate Geometrically, this means that the elasmobranch will always electrosensor units known as the ampullae of Lorenzini. The ampullae are often tightly clustered, but each is linked to an individual pore on the surface of the body via a long, gel-filled Editor: Karl J. Friston, University College London, United Kingdom canal (see Figure 1), and the pores are widely distributed (on Received February 12, 2007; Accepted May 4, 2007; Published June 15, 2007 the head and pectoral fins in skates and rays). Copyright: Ó 2007 Camperi et al. This is an open-access article distributed under Each ampulla is able to code minute electrical fluctuations the terms of the Creative Commons Attribution License, which permits unrestricted into discharge patterns of primary afferent nerves [10]. The use, distribution, and reproduction in any medium, provided the original author and source are credited. sensing cells of an ampulla’s epithelium detect electric potential differences between its apical side within the Abbreviations: DON, dorsal octavolateralis nucleus ampulla, and its basal side outside the ampulla. A sudden * To whom correspondence should be addressed. E-mail: [email protected] PLoS Computational Biology | www.ploscompbiol.org1083 June 2007 | Volume 3 | Issue 6 | e113 Neural Information in the Electric Sense Author Summary The electric sense appears in a variety of animals, from the shark to the platypus, and it facilitates short-range prey detection where environments limit sight. Typically, hundreds or thousands of sensors work in concert. In skates, rays, and sharks, each electro- sensor includes a small, innervated bulb, with a thin, gel-filled canal leading to a surface pore. While experiments have mapped single electrosensor activity, the mechanisms that integrate neural input from multiple electrosensors are still largely unknown. Here, we model the response of a precisely mapped subset of electrosensors responding in concert for a skate moving near stationary prey. Just as two ears help locate sound via time and intensity differences, we ask how a bilateral electrosensor array can contribute to electrical scene analysis. Our results show that the sensor array provides rich data for precise prey location, tuned by the morphology to render certain events, like the point of closest approach, ‘‘loud and clear.’’ This proof of principle makes a significant step in understanding the electric sense processing, and we recommend future experiments to compare and assess functions for the diversity of arrays found in other sharks and rays. arrive at the source, even if this sometimes means an inefficient, spiraling path. In an initial simulation effort, one of us showed that the Kalmijn algorithm would typically mean that an elasmobranch moves in such a way to Figure 1. Simplified Schematic Depicting Two Ampullae within a Single reinforce the signal received by each electroreceptor [17]. Cluster, with Their Associated Canals and Pores However, recent behavioral analyses of sharks approaching Points A and C denote two pores, leading via gel-filled canals to their artificial electric dipoles show that the animals usually respective ampullae. Points B and D denote the inner ampullae, exhibit sharp turns toward the electric field source [18]. referencing electric potentials on the apical sides of the respective Thus, it appears that information regarding the source’s sensory epithelia. Point E is a common reference for the basal sides of ampullae within the cluster. The model used here emphasizes the location and/or the decision to approach the source is potential differences arising along the internal gel of the narrow canals developed rather quickly by the predator. These observa- as driving the apical potentials, which lead to excitation or inhibition tions are not necessarily at odds with the Kalmijn algorithm, based on their relation to the relatively constant basal potential at point E (see text). however. The algorithm could guide a creature for a brief doi:10.1371/journal.pcbi.0030113.g001 period of time until an overwhelming strength of signal among the sensor population helps it establish the exact location of the source. relevant morphological measurements and move beyond From the electrosensors, primary afferents project to electrical signals within the ampullae to the population principal cells of the DON in the medulla [19]. Ascending codes of neural information available to the elasmobranch efferent neurons in the skate have a strong ascending central nervous system. The canals in sharks’ electrosensory projection from the medulla to the contralateral midbrain, systems thoroughly map a 3-D space. While this is computa- where they converge in the lateral mesencephalic nucleus tionally straightforward, data representations and interpre- and the tectum, combining there with other sensory inputs tations are cumbersome. Therefore, we examine several [20]. Self-generated electrical signal subtraction has been scenarios
Recommended publications
  • SR 53(5) 38-40.Pdf
    M. GOSWAMI & ANIRBAN ROY RTICLE A EATURE F An understanding of the evolution of the electric organ from muscle cells in electric fi shes can open a new horizon in synthetic biology. Muscles in other vertebrates or invertebrates may be manipulated for generating electrical power in human organs such as heart, brain, and spinal cord. Since the last few decades, the the resting state, the internal potential development and working of electric amounts to -70mV to -80mV (depending organs inside the fi sh’s body has been upon the type of cell). This is termed as a sublime topic of interest for many resting potential or Nernst potential. The researchers. The scientifi c world is of negative sign in the membrane potential the opinion that the electric organs from signifi es the presence of the non-diffusible which electric discharges are produced anions and unequal distribution of ions have evolved half a dozen times in the across cytosol. HILE we humans have to generate environment. Variations of ionic concentration electricity to take care of many W inside and outside the cell as well as activities, there are fi shes that produce difference in the permeability of cell their own electricity. Electric fi shes and Bioelectricity membrane to diverse ions are responsible A fi sh capable of generating electric fi elds Within the aquatic world, there for the existence of resting potential. is said to be electrogenic while a fi sh are hundreds of electric fi shes. Charles Usually K+, Na+, Cl-, Ca2+ ions are that can detect electric fi elds is said to be Darwin had recognised electric fi shes as widely available in the intracellular and electroreceptive.
    [Show full text]
  • Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates
    RESEARCH ARTICLE Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates Rahul Bale1, Izaak D. Neveln2, Amneet Pal Singh Bhalla1, Malcolm A. MacIver1,2,3☯*, Neelesh A. Patankar1☯* 1 Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America, 2 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America, 3 Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America ☯ These authors contributed equally to this work. * [email protected] (NAP); [email protected] (MAM) Abstract OPEN ACCESS Examples of animals evolving similar traits despite the absence of that trait in the last com- Citation: Bale R, Neveln ID, Bhalla APS, MacIver MA, Patankar NA (2015) Convergent Evolution of mon ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, Mechanically Optimal Locomotion in Aquatic are called cases of convergent evolution. Instances of convergent evolution of locomotory Invertebrates and Vertebrates. PLoS Biol 13(4): patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, e1002123. doi:10.1371/journal.pbio.1002123 we show that, with respect to a very diverse group of aquatic animals, a mechanically opti- Academic Editor: Anders Hedenström, Lund mal method of swimming with elongated fins has evolved independently at least eight times University, SWEDEN in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we Received: September 29, 2014 take the length of an undulation along an animal’s fin during swimming and divide it by the Accepted: March 6, 2015 mean amplitude of undulations along the fin length, the result is consistently around twenty.
    [Show full text]
  • Downloaded from NCBI Genbank (Benson Et Al
    THE UNIVERSITY OF CHICAGO EVOLUTION IN FRESH WATERS DURING THE GREAT AMERICAN INTERCHANGE A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES AND THE PRITZKER SCHOOL OF MEDICINE IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY COMMITTEE ON EVOLUTIONARY BIOLOGY BY TIMOTHY SOSA CHICAGO, ILLINOIS DECEMBER 2017 Table of Contents List of Tables . iii List of Figures . iv Acknowledgments . vi Chapter 1: Introduction . 1 Chapter 2: Broadly sampled phylogeny of Characiformes reveals repeated colonization of North America and paraphyly of Characiformes sensu stricto . 8 Chapter 3: No evidence for filtering of eco-morphology in characiform lineages during the Great American Interchange . 17 Chapter 4: Both elevation and species identity strongly predict body shape in Astyanax tetras . 27 Chapter 5: Diet may mediate potential range expansions of Neotropical fishes under climate change . 39 Chapter 6: Discussion . 52 References . 57 Appendix: List of specimens newly sequenced for this study . 67 ii List of Tables 1.1 Recognized families in the order Characiformes . 5 2.1 Fossil occurrences used for time-calibration . 11 4.1 Distances in morphospace among tetra populations . 32 5.1 Variables determining the range limits of Astyanax . 45 5.2 Variables determining the range limits of Brycon . 47 5.3 Variables determining the range limits of Roeboides . 49 iii List of Figures 1.1 Hypothetical relationships among ostariophysan groups . 4 2.1 Phylogeny of Characiformes as inferred from myh6 locus . 13 3.1 Landmark configuration for geometric morphometrics . 19 3.2 Morphospace occupation in North and South American characins . 21 3.3 Deformation grids showing axes of shape variation among characins .
    [Show full text]
  • Evolution of the Pgc-1 Protein Family in the Control of Oxidative Metabolism in Vertebrates
    EVOLUTION OF THE PGC-1 PROTEIN FAMILY IN THE CONTROL OF OXIDATIVE METABOLISM IN VERTEBRATES by Christophe Marie Renaud Le Moine A thesis submitted to the Department of Biology In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada (July, 2008) Copyright © Christophe Marie Renaud Le Moine, 2008 Abstract Mitochondrial biogenesis requires an intricate transcriptional coordination between the nuclear and mitochondrial genomes to establish the structural and functional components of the organelle. This coordination is paramount in vertebrate muscles where oxidative capacity must be adjusted to meet varying energy demands. I investigated the regulatory circuits controlling mitochondrial content in vertebrate muscle in the context of development, adaptation to nutritional status and temperature, and in an evolutionary perspective. Initial experiments focused on the role of transcriptional regulators in the metabolic changes in the myocardium of aging rat. I hypothesized that the changes in oxidative capacity associated with aging would be primarily driven by the peroxisome proliferator activated-receptors (PPARs), the nuclear respiratory factors (NRFs) and their common coactivator PPAR coactivator-1 (PGC-1 . However, the reduction in oxidative capacity in the heart of old rats was independent of these regulatory axes and occurred partially through post-transcriptional processes. The next series of experiments investigated the transcriptional networks regulating the metabolic remodelling in goldfish subjected to dietary and temperature stress. As a potent regulator of mitochondrial proliferation in mammals, I hypothesized that PGC-1 assumed a similar role in lower vertebrates. Similar to their mammalian homologues, PPAR and NRF-1 assumed their respective roles in regulating lipid metabolism and mitochondrial proliferation in goldfish.
    [Show full text]
  • A Biomimetic Quasi-Static Electric Field Physical Channel for Underwater Ocean Networks
    A Biomimetic Quasi-static Electric Field Physical Channel for Underwater Ocean Networks Jonathan Friedman Dustin Torres Thomas Schmid Dept. of Electrical Engineering Dept. of Electrical Engineering Dept. of Electrical Engineering [email protected] [email protected] [email protected] Juyao Dong Mani B. Srivastava Dept. of Chemistry Dept. of Electrical Engineering [email protected] [email protected] Networked and Embedded Systems Laboratory University of California, Los Angeles ABSTRACT application of theory to explain the observed performance Nature has had millions of years to develop and optimize and predict future design improvements, (2) experimental life in the ocean. Nocturnal oceanic animals and those that proof of the existence and utility of the phenomenon, (3) live at depth cannot rely upon optical notions of vision to an engineering validation of the rationale for the naturally navigate, hunt, or avoid predators. Instead, many rely upon observed weak-electric fish waveforms, and (4) the design an electroreceptive capability achieved through a dense grid and implementation of a working short-range proximity sen- of electric field (Voltage) sensors. In this work, we develop sor for underwater wireless network neighborhood discovery and characterize an artificial system which seeks to mimic and station keeping. In the case of mobile network nodes, this capability. The detection range of our resulting proto- this sensor could assist in collision avoidance and formation type was ≈ 5cm. The position accuracy in the middle of the management. transmit axis was ±5cm after calibration. 2. PHYSICAL CHANNELS 1. INTRODUCTION A physical channel may be used for sensing, communica- tion, or actuation.
    [Show full text]
  • SPAWNING of BLACK GHOST KNIFEFISH, Apteronotus Albifrons with DIFFERENT SEX RATIOS
    doi: 10.15578/iaj.16.1.2021. 29-34 Indonesian Aquaculture Journal, 16 (1), 2021, 29-34 Available online at: http://ejournal-balitbang.kkp.go.id/index.php/iaj SPAWNING OF BLACK GHOST KNIFEFISH, Apteronotus albifrons WITH DIFFERENT SEX RATIOS Fajar Maulana#, Dinar Tri Soelistyowati, and Muhammad Fadlan Furqo Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University Jl. Agatis IPB Dramaga Campus, Bogor, 16680, West Java, Indonesia (Received: October 26, 2020; Final revised: March 8, 2021; Accepted: March 8, 2021) ABSTRACT Black ghost knifefish, Apteronotus albifrons, is a South America-introduced ornamental fish species that has been widely cultivated in Indonesia. Some farmers breed this fish with different sex ratios, but the optimum sex ratio remains unclear. This study aimed to evaluate the spawning behavior and reproductive performance of black ghost knifefish with different sex ratios. The treatments in this study were arranged in a completely randomized design consisting of different sex ratios between males and females, namely: A (one male : three females), B (two males : three females), and C (three males : three females). Each treatment was done in triplicate. The broodstock were maintained in an aquarium (80 cm x 40 cm x 40 cm) and fed with bloodworm twice a day. The water was changed every day as much as 60% of the total volume. During the experiment, the parameters of spawning behavior, number of fish spawning, number of eggs, fertilization rate, hatching rate, and daily spawning frequencies were observed. The observation was done for seven days. The study results showed that black ghost knifefish spawned at night (11 pm - 2 am).
    [Show full text]
  • Electric Fish Use Electrocommunication Signals to Fine Tune Relative
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429572; this version posted February 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Electric fish use electrocommunication signals to fine tune relative 2 dominance and access to resources 1;2† 1 1 1;2;3 3 Till Raab , Sercan Bayezit , Saskia Erdle , Jan Benda 1 4 Institute for Neurobiology, Eberhard Karls Universitat,¨ Tubingen,¨ Germany 2 5 Centre for Integrative Neuroscience, Eberhard Karls Universitat,¨ Tubingen,¨ Germany 3 6 Bernstein Centre for Computational Neuroscience, Eberhard Karls Universitat,¨ Tubingen,¨ Germany † 7 corresponding author: [email protected] 8 Abstract 9 Social animals establish dominance hierarchies to regulate access to resources. Although communication 10 signals could reduce costs in negotiating dominance, their detailed role and emergence in non-mammalian ver- 11 tebrates is not well researched. We tracked electrocommunication signals and agonistic behaviors of the gym- 12 notiform fish Apteronotus leptorhynchus in staged competition experiments. Subordinates emitted the majority 13 of so called “rises” in dependence on the competitor’s relative size and sex. Rises provoked ritualized biting or 14 chasing behaviors by dominant fish. Already after 25 minutes losers were accurately predictable based on rise 15 numbers, but they continued to emit rises. We suggest the interplay between communication and aggression 16 to fine tune relative dominance without questioning dominance rank. This communication system regulates the 17 skewness of access to resources within a dominance hierarchy and allows A.
    [Show full text]
  • Discrimination and Behavioral Responses to Communication Signals Compared Across Apteronotids
    Graduate Theses, Dissertations, and Problem Reports 2019 Discrimination and behavioral responses to communication signals compared across Apteronotids. Danielle Leigh Dillon-Seeger [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Behavioral Neurobiology Commons, and the Other Neuroscience and Neurobiology Commons Recommended Citation Dillon-Seeger, Danielle Leigh, "Discrimination and behavioral responses to communication signals compared across Apteronotids." (2019). Graduate Theses, Dissertations, and Problem Reports. 7392. https://researchrepository.wvu.edu/etd/7392 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Discrimination and behavioral responses to communication signals compared across Apteronotids. Danielle L. Dillon-Seeger Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Biology Gary Marsat, Ph.D., Chair Clifton Bishop, Ph.D. Sadie Bergeron, Ph.D. Department of Biology Morgantown, West Virginia 2019 Keywords: Chirps, Communication, Behavior, Electroreception, Perception.
    [Show full text]
  • Unrestricted Species
    UNRESTRICTED SPECIES Actinopterygii (Ray-finned Fishes) Atheriniformes (Silversides) Scientific Name Common Name Bedotia geayi Madagascar Rainbowfish Melanotaenia boesemani Boeseman's Rainbowfish Melanotaenia maylandi Maryland's Rainbowfish Melanotaenia splendida Eastern Rainbow Fish Beloniformes (Needlefishes) Scientific Name Common Name Dermogenys pusilla Wrestling Halfbeak Characiformes (Piranhas, Leporins, Piranhas) Scientific Name Common Name Abramites hypselonotus Highbacked Headstander Acestrorhynchus falcatus Red Tail Freshwater Barracuda Acestrorhynchus falcirostris Yellow Tail Freshwater Barracuda Anostomus anostomus Striped Headstander Anostomus spiloclistron False Three Spotted Anostomus Anostomus ternetzi Ternetz's Anostomus Anostomus varius Checkerboard Anostomus Astyanax mexicanus Blind Cave Tetra Boulengerella maculata Spotted Pike Characin Carnegiella strigata Marbled Hatchetfish Chalceus macrolepidotus Pink-Tailed Chalceus Charax condei Small-scaled Glass Tetra Charax gibbosus Glass Headstander Chilodus punctatus Spotted Headstander Distichodus notospilus Red-finned Distichodus Distichodus sexfasciatus Six-banded Distichodus Exodon paradoxus Bucktoothed Tetra Gasteropelecus sternicla Common Hatchetfish Gymnocorymbus ternetzi Black Skirt Tetra Hasemania nana Silver-tipped Tetra Hemigrammus erythrozonus Glowlight Tetra Hemigrammus ocellifer Head and Tail Light Tetra Hemigrammus pulcher Pretty Tetra Hemigrammus rhodostomus Rummy Nose Tetra *Except if listed on: IUCN Red List (Endangered, Critically Endangered, or Extinct
    [Show full text]
  • 2010 Abstract Book
    ABSTRACTS from PLENARY LECTURES (PL) SPECIAL LECTURES (SL) SYMPOSIA (S) PARTICIPANTS SYMPOSIA (PS) and YOUNG INVESTIGATORS TALKS (YIT) 1 AUGUST 3 Plenary Lecture 1 Mark Willis (Case Western Reserve University) PL1 “The Neuroethology of odor-guided flight in moths: Interaction of environment, locomotion and sensor structure determines odor-tracking behavior.” Locating important resources from long distances often requires the ability to track odors that have evaporated from their source and been distributed downstream as turbulent dynamically changing distributions of odor molecules known as plumes. Walking and flying animals perform complex maneuvers while tracking odor plumes through very different environmental conditions no matter where their sensors are positioned. Two alternative strategies may allow them to maintain contact with plumes using olfaction: (1) a spatial strategy, i.e., simultaneous comparison of odor concentrations at two locations in space using bilaterally symmetrical sensors, or (2) a temporal strategy, i.e., comparisons of odor concentrations over time. It is thought that animals rapidly navigating in three-D through turbulent odor plumes use a temporal strategy, while animals navigating slowly near surfaces use a spatial strategy. However, animals can move at a range of speeds, change their mode of locomotion, and encounter many environments. Whether an animal tracks plumes spatially or temporally is difficult to determine because the effects of sensory input, behavior, and the environment are entangled. We have experimentally-manipulated air flow in our laboratory flight tunnel to mimic turbulence experienced by plume tracking insects in different natural environments. These flows and the odor plumes generated by them have been carefully characterized using flow sensors (hot-wire anemometers) and the antennae of the insects we study as bio-detectors.
    [Show full text]
  • U Ottawa L'universite Canadienne Canada's University T
    u Ottawa L'Universite canadienne Canada's university t FACULTE DES ETUDES SUPERIEURES FACULTY OF GRADUATE AND ET POSTOCTORALES u Ottawa POSDOCTORAL STUDIES L'University canadienne Canada's university Mayron Moorhead AUTEUR DE LA THESE / AUTHOR OF THESIS M.Sc. (Biology) GRADE/DEGREE Department of Biology FACULTE, ECOLE, DEPARTEMENT/FACULTY, SCHOOL, DEPARTMENT TITRE DE LA THESE / TITLE OF THESIS Kathleen Gilmour DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR John Lewis CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE/THESIS CO-SUPERVISOR Steve Perry Charles-Antoine Darveau Jayne Yack Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies The Metabolic Cost of Electric Signalling in Weakly Electric Fish By Mayron Moorhead Thesis submitted to the School of Graduate Studies and Research University of Ottawa In partial fulfillment of the requirements for the M.Sc. Degree in the Ottawa-Carleton Institute of biology These soumise a I'Ecole d'etudes superieure et de recherche Universite d'Ottawa envers la realization partielle des exigeances du degree M.Sc. de I'lnstitut de Biologie Ottawa-Carleton Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre r6terence ISBN: 978-0-494-79672-6 Our file Notre rSfSrence ISBN: 978-0-494-79672-6 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde
    [Show full text]
  • Prey Capture in Black Ghost Knifefish
    The Journal of Experimental Biology 202, 1195–1203 (1999) 1195 Printed in Great Britain © The Company of Biologists Limited 1999 JEB2086 PREY CAPTURE IN THE WEAKLY ELECTRIC FISH APTERONOTUS ALBIFRONS: SENSORY ACQUISITION STRATEGIES AND ELECTROSENSORY CONSEQUENCES MARK E. NELSON1,2,3,* AND MALCOLM A. MACIVER2,3 1Department of Molecular and Integrative Physiology, 2The Neuroscience Program and 3The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA *e-mail: [email protected] Accepted 25 January; published on WWW 21 April 1999 Summary Sensory systems are faced with the task of extracting electrosensory afferent response dynamics to estimate the behaviorally relevant information from complex sensory spatiotemporal patterns of transdermal potential change environments. In general, sensory acquisition involves two and afferent activation that occur during prey-capture aspects: the control of peripheral sensory surfaces to behavior. We characterize the behavioral strategies used improve signal reception and the subsequent neural by the fish, with emphasis on the functional importance of filtering of incoming sensory signals to extract and enhance the dorsal edge in prey capture behavior, and we analyze signals of interest. The electrosensory system of weakly the electrosensory consequences. In particular, we find that electric fish provides a good model system for studying both the high-pass filter characteristics of P-type afferent these aspects of sensory acquisition. On the basis of response dynamics can serve as a predictive filter for infrared video recordings of black ghost knifefish estimating the future position of the prey as the (Apteronotus albifrons) feeding on small prey (Daphnia electrosensory image moves across the receptor array.
    [Show full text]