Review of Evidence on Integrated Pest Management Final Report 30/03/2020

Total Page:16

File Type:pdf, Size:1020Kb

Review of Evidence on Integrated Pest Management Final Report 30/03/2020 Defra Review of Evidence on Integrated Pest Management Final Report 30/03/2020 Defra 1 Review of evidence on Integrated Pest Management Project_ 27269 ADAS GENERAL NOTES Project No.: 27269 Title: Review of evidence on Integrated Pest Management Client: Defra Date: 22/03/2020 Office: ADAS, 4205 Park Approach, Leeds, LS15 8GB Status: Draft Hannah Adamson, Carla Turner, Eleanor Cook, Henry Creissen (SRUC), Andy Evans (SRUC), Sarah Cook, Mark Ramsden, Ewan Gage, Author Leila Froud, Faye Ritchie, James Clarke. Date: 30/03/2020 Technical Reviewer John Elliott, Neil Paveley Date: 30/03/2020 RSK ADAS Ltd (ADAS) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and ADAS. No other warranty, expressed or implied, is made as to the professional advice included in this report. Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by ADAS for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested. No part of this report may be copied or duplicated without the express permission of ADAS and the party for whom it was prepared. Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work. This work has been undertaken in accordance with the quality management system of RSK ADAS Ltd. Defra 2 Review of evidence on Integrated Pest Management Project_ 27269 Executive Summary Background IPM is an integrated multi-layered approach which includes a number of tangible measures as well as attitudinal and husbandry behaviours, which in combination can form an effective approach to crop protection. Integrated Pest Management (IPM) is an important part of the Government’s future vision of crop protection and currently part of important policy documents, including the 25 Year Environmental Plan, and legislation, transposed from the European Union Sustainable Use Directive. ADAS and SRUC have been commissioned by Defra to conduct a research study to: Enhance Defra’s understanding of what works in IPM through a comprehensive review of recent evidence; and Collect best practice examples that can inform communication with growers Methodology To meet these objectives twenty-one stakeholder interviews were conducting to inform a Rapid Evidence Assessment (REA). The interviews were semi-structured and with stakeholders in organisations from; farmer or grower member organisations, research institutes, Non-Governmental Organisations, the Ag-Chem industry and agronomists. Information from the interviews helped refine the methodology for the REA as well as provide key evidence from the stakeholders. Eight key research questions were developed as part of the REA protocol which set out a systematic way of searching, reviewing and synthesising the available evidence. Research question 1: Are IPM approaches effective at reducing pesticide use? The evidence was mostly consistent in showing a decrease in chemical pesticide use where an IPM approach had been taken. This was consistent across different countries, sectors and crops. Specific measures which reported a reduction in chemical pesticide use included; natural predators, the use of pest thresholds, crop rotation and later drilling amongst others. For some evidence the impact of IPM approaches on chemical pesticide use was not measured and instead seen as common knowledge which did not need to be proven. It highlighted that IPM provides a systematic approach which can help farmers and growers take a holistic approach to their pest control and highlight areas they may not have previously considered. Evidence gaps were identified including understanding the impact of new measures and combination of measures on chemical pesticide use. Research question 2: What combination of IPM measures are most effective at reducing pests? Key IPM measures and approaches were categorised within the framework of the eight IPM principles; prevention and suppression, monitoring, informed decision making, non- chemical methods, pesticide selection, reduced pesticide use, anti-resistance management and evaluation. Prevention and suppression measures are often most popular with farmers and growers as they are perceived as requiring fewer resources than other measures. A number of these measures were explored including, crop rotation, cover crops, pest resistant crop and plant varieties, soil cultivation and irrigation. Non-chemical methods Defra 3 Review of evidence on Integrated Pest Management Project_ 27269 focused on biopesticides, beneficial organisms, physical barriers and mechanical weeding. For monitoring using local and regional pest forecast data, crop walking and evidence on thresholds was explored. Thresholds were considered as useful for some crops, but not all depending on the crop type and pest characteristics. Various sources of information are available to crop protection decision makers, including agronomy advice, online decision support systems, levy bodies and personal networks. In some countries there is evidence which identified that support networks have been found to be successful at helping farmers make informed decision on pest management. A holistic approach to IPM requires the incorporation of all eight principles across the farm and over multiple seasons, to create a sustainable and productive cropping environment. Research question 3: What are the impacts of IPM on the wider environment? The majority of the evidence identified positive impacts on the wider environment from the adoption of IPM. Much of the focus was on the positive impact of decreasing chemical pesticide use on the wider environment. The evidence focusses on benefits to the wider environment, including resilience of yield, soil quality and soil organic carbon (SOC), and biodiversity. To a lesser extent benefits were related to climate change. Additionally, it highlights a small amount of evidence which focuses on the positive public perception of IPM. The evidence gaps for this research question focus on the impacts of the IPM measure on the wider environment and not just the impacts of the reduction of chemical pesticide use. Research question 4: What are the socio-economic impacts of IPM on the farming industry? The main socio-economic impacts identified within the evidence focussed on the reduction of costs for the farmer through decreasing the use of chemical pesticides. IPM adoption was also associated with building networks and sharing knowledge within the farming industry. However, the evidence also raised the farmer and growers perception of the potential to reduction of yield or income if they decreased their chemical pesticide use. Beyond environmental benefits, IPM was viewed as being a systems-based approach, which can help farming become more economically and socially sustainable, partly due to the wide range of measures available as part of IPM. There is a lack of research identified on the social impacts of IPM uptake including information on human and social capital. Research question 5 and 6: What are the barriers and enablers to uptake of IPM measures or approaches? IPM is considered by farmers as high risk in terms of protecting yield and economic returns from the crop. Moreover, the evidence highlighted that benefits from IPM can take a longer time to realise than chemical pesticides. This is amplified by the supply chain and consumer preference. IPM measures can be costly in terms of time, due to the additional effort required to research and implement in comparison to chemical pesticides. There is very consistent evidence that the lack of farmer knowledge is a significant barrier to the uptake of IPM. IPM measures are often more complex and require a good understanding of the identification of pests, pest demography and ecology in order to work effectively. Additionally, farmers can receive unclear messages and information from too many organisations making it difficult for them to identify and assimilate the appropriate knowledge. Defra 4 Review of evidence on Integrated Pest Management Project_ 27269 Policy mechanisms, knowledge exchange and pesticide resistance were all highlighted as enablers to IPM uptake. There are evidence gaps on effective policy interventions, particularly with newer approaches such as co-development and understanding what works for farmer initiatives in the UK. There is evidence of some early research looking into consumer willingness to pay for produce from IPM based operations. Research question 7: What IPM initiatives are there? Through interviews and the REA, initiatives were identified from many countries worldwide. Within the UK the evidence highlighted the Voluntary Initiative and LEAF as two key initiatives which have had a positive impact on the adoption of IPM. Furthermore, several European initiatives were identified which tended to be funded by European commission funding with more of a focus on IPM research and sharing this knowledge with practitioners. Ten case studies were produced as part of this research question, however, there was a limited amount of information evaluating the initiatives
Recommended publications
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Semiochemical-Based Alternatives to Synthetic Toxicant Insecticides For
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Rothamsted Repository Arthropod-Plant Interactions DOI 10.1007/s11829-017-9569-6 ORIGINAL PAPER Semiochemical‑based alternatives to synthetic toxicant insecticides for pollen beetle management Alice L. Mauchline1 · Maxime R. Hervé2 · Samantha M. Cook3 Received: 31 March 2017 / Accepted: 3 October 2017 © Her Majesty the Queen in Right of United Kingdom 2017 Abstract There is an urgent need to develop sustainable Introduction pest management systems to protect arable crops in order to replace the current over-reliance on synthetic insecticides. The pollen beetle Brassicogethes aeneus Fab. (synonym Semiochemicals are insect- or plant-derived chemicals that Meligethes aeneus) (Coleoptera: Nitidulidae) is a major are used by organisms as information signals. Integrated pest pest of oilseed rape (OSR) (Brassica napus L.) crops (Wil- management tools are currently in development that utilise liams 2010). Of the suite of pests that attack OSR, pollen semiochemicals to manipulate the behaviour of pest insects beetles were found to have the largest negative impact on and their natural enemies to provide efective control of pests seed yield (Gagic et al. 2016). They can cause signifcant within the crop. These innovative tools usually require fewer feeding damage to the developing fower buds which can inputs and can involve multiple elements, therefore reduc- result in blind stalks, thereby preventing the growth of pods, ing the likelihood of resistance developing compared with leading to large economic losses (Hansen 2004; Zlof 2008). use of synthetic toxicants. We review here the life cycle of Pyrethroid insecticides have been the main control option for the pollen beetle Brassicogethes aeneus (previously known pollen beetles for over 20 years.
    [Show full text]
  • Rvk-Diss Digi
    University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands.
    [Show full text]
  • Factors Regulating the Population Dynamics and Damage Potential of Pollen Beetle (Meligethes Aeneus F.) on Crops of Oilseed Rape
    Factors regulating the population dynamics and damage potential of pollen beetle (Meligethes aeneus F.) on crops of oilseed rape Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Marie-Luise Tölle geboren in Gifhorn Göttingen, Mai 2014 D 7 1. Referentin/Referent: Prof. Dr. Stefan Vidal 2. Korreferentin/Korreferent: Prof. Dr. Andreas von Tiedemann Tag der mündlichen Prüfung: 12.05.2011 Contents Table of contents page Chapter I General introduction ........................................................................................................... 1 The pest: Meligethes aeneus ............................................................................................. 2 Factors influencing the population dynamics of pollen beetle ............................................ 3 Possible effects of insecticides on population growth and damage of pollen beetle ........... 4 Parasitoids and parasitisation of pollen beetle ................................................................... 5 Trap cropping in oilseed rape ............................................................................................ 6 References ........................................................................................................................ 7 Chapter II Cultivar and phenology of winter oilseed rape affect the abundance and reproduction of Meligethes aeneus (Fabricius) ......................................................................................11
    [Show full text]
  • Disease and Insect Pest Management in Organic Cucurbit Production Hayley Nelson Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Disease and insect pest management in organic cucurbit production Hayley Nelson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Plant Pathology Commons Recommended Citation Nelson, Hayley, "Disease and insect pest management in organic cucurbit production" (2019). Graduate Theses and Dissertations. 17066. https://lib.dr.iastate.edu/etd/17066 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Disease and insect pest management in organic cucurbit production by Hayley Marie Nelson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Plant Pathology Program of Study Committee: Mark L. Gleason, Major Professor Gwyn A. Beattie Erin W. Hodgson Ajay Nair Alison E. Robertson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University
    [Show full text]
  • Insects Squash Vine Borer
    Extension SP503-A Insects Squash Vine Borer Frank A. Hale, Professor Entomology and Plant Pathology Damage Appearance, Lifecycle and Squash vine borers, Melittia Behavior cucurbitae (Harris) [Order The oval, flattened, dull-red to Lepidoptera, Family Sesiidae] use brownish eggs are 1mm (1/25 inch) their chewing mouthparts to bore in diameter. They are laid singly, into stems of their host plants. usually on the main stem near the Squash, pumpkin and gourds are base. They can also be found on commonly attacked. Hubbard leafstalks or on the underside of squash is preferred over other leaves hosts, while butternut squash is Larva visible in the vine. The larva has a whitish Frank A. Hale less susceptible than other types wrinkled body, a brown head, three of squash. Melons and cucumbers are usually not pairs of short legs and five pairs of fleshy prolegs attacked. The larvae are usually found in the lower on its abdomen. There are two transverse rows of 3 feet of the stem. Their continuous feeding girdles minute curved spines (crochets) on each proleg. The stems so that water and nutrients taken up by the fullgrown larva is 25mm (1 inch) long. The pupa is roots cannot reach the rest of the vine. This damage brown and 16mm (5/8 inch) long. The pupa is found causes infested plants to weaken and often die. Injured in the soil, inside an earth-covered black silk cocoon vines will often decay, appearing wet and shiny. The that is 19mm (3/4 inch) long. larva pushes yellow, sawdust-like excrement (frass) The adult is a clear-winged moth that looks like out of its expanded entry hole in the stem.
    [Show full text]
  • Biology and Management of Squash Vine Borer (Lepidoptera: Sesiidae)
    Journal of Integrated Pest Management, (2018) 9(1): 22; 1–8 doi: 10.1093/jipm/pmy012 Profile Biology and Management of Squash Vine Borer (Lepidoptera: Sesiidae) Eric Middleton1 Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Avenue, St. Paul, MN 55108 and 1Corresponding author, e-mail: [email protected] Subject Editor: Thomas Kuhar Received 7 May 2018; Editorial decision 6 July 2018 Abstract Squash vine borer, Melittia cucurbitae (Harris) (Lepidoptera: Sesiidae), is a species of clearwing moth native to North and South America which is a pest on members of the cucurbit family during its larval stage. Squash vine borer larvae burrow into cucurbit stems and runners, causing damage and often mortality by girdling the stem. Because they are a sporadic pest and affect home gardens or small-scale diversified farms more often than large-scale operations, research on squash vine borer management is limited. Preventing infestations, often through the use of tillage and sanitation and floating row covers, is a commonly recommended method of control. Perimeter trap cropping is also effective at preventing crop damage. Insecticides such as pyrethroids and spinosad can be applied for control of eggs and young larvae of squash vine borer, with consistent and early scouting and monitoring leading to more effective control. Newer methods of spraying Bacillus thuringiensis or entomopathogenic nematodes onto the crop show some promise for both organic and conventional farmers, and prove easier than injecting them into affected cucurbit stems. The use of arthropod natural enemies for biological control has proven ineffective at controlling squash vine borer. Preventing infestations and understanding the biology of this pest are essential to managing squash vine borer effectively for both small-scale and commercial growers.
    [Show full text]
  • Summer Squash and Zucchini: Organic Production in Virginia by Mark Schonbeck, Editor, Virginia Biological Farmer
    Summer Squash and Zucchini: Organic Production in Virginia By Mark Schonbeck, Editor, Virginia Biological Farmer Introduction notable exception is ‘Tromboncino,’ a variety of C. moschata (butternut squash) that forms long vines and Summer squash and zucchini are varieties of the bears light green, long-necked fruit that make excellent genus Cucurbita (squash, pumpkins, and gourds) whose summer squash if harvested at 8 to 12 inches. fruit are harvested and eaten at an immature stage. They Summer squash is a frost-tender, warm season crop, come in many shapes and colors, are usually eaten as a but its short life cycle (40 to 60 days from germination to fresh vegetable lightly steamed, stir-fried, or raw. Well- first harvest) allows production throughout the US and known types include zucchini (a general term for into southern Canada. In Virginia, our longer growing elongated, cylindrical, usually green summer squash), season allows multiple plantings for an extended harvest yellow crookneck, yellow straightneck, and patty-pan or from early summer until fall. scallop squash (which may be white, green, or yellow). Summer squash is monoecious, which means that the Summer squash are harvested well before they reach their male (stamens, shedding pollen) and female (pistil and mature size, typically when fruit are 3 to 8 inches in their ovary, forming the fruit) organs are borne in separate longest dimension, depending on markets and buyer flowers on the same plant. Thus, most varieties of summer preference. Overmature summer squash are tougher and squash depend on bees or other pollinators to deliver less flavorful, though large zucchinis can be baked, used in pollen to the pistils of female flowers, thereby initiating soup, or for zucchini bread.
    [Show full text]
  • A New Species of Darwin Wasp from Mexico Named in Observance of the 2020 Quarantine Period 8 October 2020
    A new species of Darwin wasp from Mexico named in observance of the 2020 quarantine period 8 October 2020 explain the scientists. The new species, which goes by the official scientific name Stethantyx covida, belongs to the Darwin wasp family Ichneumonidae, one of the most species-rich insect families, which comprises more than 25,000 species worldwide. "Darwin wasps are abundant and well-known almost everywhere in the world because of their beauty, gracility, and because they are used in biological control of insect pests in orchards and forests. Many Darwin wasp species attack the larvae or pupae of butterflies and moths. Yet, some Holotype specimen of the newly described species of species are particularly interesting, as their larvae parasitic Darwin wasp Stethantyx covida. Credit: Andrey feed on spider eggs and others, even more bizarre, I. Khalaim develop on living spiders!" further explain the authors of the new study. Stethantyx covida is a small wasp that measures Scientists at the Autonomous University of merely 3.5 mm in length. It is predominantly dark in Tamaulipas (UAT) in Mexico recently discovered color, whereas parts of its body and legs are yellow five new species of parasitoid wasps in Mexico, but or brown. It is highly polished and shining, and the the name of one of them sounds a bit weird: ovipositor of the female is very long and slender. covida. Why this name? Along with Stethantyx covida, the authors also In fact, the reason is quite simple. The thing is that described four other Mexican species of Darwin the team of Andrey Khalaim (also a researcher at wasps from three different genera (Stethantyx, the Zoological Institute of Russian Academy of Meggoleus, Phradis), all belonging to the subfamily Sciences in Saint Petersburg, Russia) and Enrique Tersilochinae.
    [Show full text]
  • Correct Name for the Neotropical Squash-Vine Borer (Sesiidae: Melittia)
    Journal of the Lepidopterists' Society 38(1), 1984, 13-14 CORRECT NAME FOR THE NEOTROPICAL SQUASH-VINE BORER (SESIIDAE: MELITTIA) VITOR O. BECKERi AND THOMAS D. EICHLIN2 ABSTRACT. The identity of the species of squash-vine borer occurring in Central and South America on cultivated Cucurbitaceae is established as Melittia pulchripes, not M. satyrini!ormis, which is a junior synonym of the Eastern squash-vine borer, M. cucurbitae. A lectotype is designated for M. riograndensis, a name which is then syn­ onymized under M. pulchripes. For more than a century the Melittia species whose larvae are com­ monly found boring in stems of many cultivated species of Cucurbi­ taceae in Central and South America has been referred to in the lit­ erature as M. satyrinijormis Hubner. In a study by Duckworth and Eichlin (1973) it was found that in the Western Hemisphere these borers belong to a complex of three closely related species: cucurbitae (Harris), satyrinijormis Hubner, and a third which they described and named calabaza. According to these authors (1973:154), the three species of the complex are easily distinguished by their external features and genitalia. A fourth species, pauper LeCerf, apparently occurs only in the vicinity of Lima, Peru. Both cucurbitae and calabaza are restricted to the United States and Mexico and are sympatric in the southern part of their range. The species distributed from Guatemala through Cen­ tral and South America was regarded by them as satyrinijormis, fol­ lowing the use of earlier authors. Heppner and Duckworth (1981:26) established that satyrinijormis is a junior synonym of cucurbitae.
    [Show full text]
  • First Report of Squash Vine Borer, Melittia Cucurbitae (Harris, 1828
    11 3 1625 the journal of biodiversity data April 2015 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 11(3): 1625, April 2015 doi: http://dx.doi.org/10.15560/11.3.1625 ISSN 1809-127X © 2015 Check List and Authors First report of Squash Vine Borer, Melittia cucurbitae (Harris, 1828) (Lepidoptera, Sessidae) in Brazil and South America: distribution extension and geographic distribution map Diones Krinski Federal University of Paraná (UFPR), Department of Plant Science and Phytosanitarism, Division of Agricultural Sciences, Caixa Postal 19061, 81531-990, Curitiba, PR, Brazil E-mail: [email protected] Abstract: Melittia cucurbitae (Harris, 1828) is a very plants (Figure 1). The species was identified by compari- important pest of squash and pumpkins. To date, this son of photographic records with the literature (Opler et lepidopteran had its distribution reported for eastern al. 2014). This new record increases the species’ distribu- United States, southeastern Canada, and Mexico. Our tion to South America and is the first report from Brazil, study reports for the first time the occurrence of squash in the southwest region of Pará state (Figure 2). vine borer, M. cucurbitae for South America, being the The borers enter and feed in the stems of vines and first record to Brazil, in southwest region of Pará state. greenish-yellow excrement is pushed out of the hole in the stem. This feeding causes severe damage to the plant Key words: Novo Progresso, Pará state, insect pests, and in many cases, kills it by girdling the stem (Capinera phytosanitary defense system. 2008). The Squash Vine Borer can cause as much as 25% crop loss in commercial squash growing.
    [Show full text]
  • Carabidae (Coleoptera) and Other Arthropods Collected in Pitfall Traps in Iowa Cornfields, Fencerows and Prairies Kenneth Lloyd Esau Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Carabidae (Coleoptera) and other arthropods collected in pitfall traps in Iowa cornfields, fencerows and prairies Kenneth Lloyd Esau Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons Recommended Citation Esau, Kenneth Lloyd, "Carabidae (Coleoptera) and other arthropods collected in pitfall traps in Iowa cornfields, fencerows and prairies " (1968). Retrospective Theses and Dissertations. 3734. https://lib.dr.iastate.edu/rtd/3734 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 69-4232 ESAU, Kenneth Lloyd, 1934- CARABIDAE (COLEOPTERA) AND OTHER ARTHROPODS COLLECTED IN PITFALL TRAPS IN IOWA CORNFIELDS, FENCEROWS, AND PRAIRIES. Iowa State University, Ph.D., 1968 Entomology University Microfilms, Inc., Ann Arbor, Michigan CARABIDAE (COLEOPTERA) AND OTHER ARTHROPODS COLLECTED IN PITFALL TRAPS IN IOWA CORNFIELDS, PENCEROWS, AND PRAIRIES by Kenneth Lloyd Esau A Dissertation Submitted to the Graduate Faculty in Pkrtial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY
    [Show full text]