Tomoko Ohta and Kenichi Aoki (Eds)

Total Page:16

File Type:pdf, Size:1020Kb

Tomoko Ohta and Kenichi Aoki (Eds) BOOK REVIEWS 157 To most biologists, however, the chief interest of this start, suggesting a routine exercise in diffusion methods, correspondence will be the light it throws on Darwin's gradually works up to a most interesting discussion on work on the species question. It is known from other coupled amino acid substitutions during the evolution sources that Darwin opened his first notebook on the of a given protein. He also contributes an autobio- transmutation of species in July 1837, that he read graphical memoir; further biographical notes are given Maithus' essay during September 1838 and that he wrote by James Crow. The remaining 27 papers, which range the pencil sketch of his species theory whilst staying at from very readable to severely technical, cover a wide Maer and Shrewsbury in the summer of 1842. There is range of topics in population genetics and evolution, no doubt, therefore, that throughout virtually the entire mainly at the molecular level. While many of the authors period covered by the correspondence published in the are not unreservedly neutralist, a contribution from the present volume, Darwin was actively working on the extreme selectionist school would have helped the book species question. Those readers who anticipate that there to be, as the editors hope, an interesting guide to modern are many letters in this book that provide direct and population genetics. The papers are, in nearly all cases, unequivocal evidence of Darwin's thinking about this of a high standard. Those who are happiest with experi- question will, however, be disappointed. The alert reader ments will particularly enjoy the paper by Hartl and will, nevertheless, spot some important clues, the earliest Dykhuizen, summarising their work on enzyme variants of which occurs in a letter to Lyell written on 14 Septem- in E. coli. One may guess, with confidence, that Kimura ber 1838 in which Darwin says that "I have lately been enjoyed the Seminar. Many happy returns! sadly tempted to be idle, that is as far as pure geology is concerned, by the delightful number of new views, J. S. GALE which have been coming in, thick and steadily, on the Department of Genetics classification and affinities and instincts of animals— University of Birmingham bearing on the question of species—notebook, after notebook has been filled, with facts, which begin to group themselves clearly under sub-laws". Other clues can be found in letters to, among others, Henslow (Sep- The evolution of DNA sequences. B. C. Clarke, A. tember 1839) and his cousin Fox (January 1841). But, Robertson and A. J. Jeifreys (eds). The Royal perhaps, the most important evidence is to be found in Society, London. 1986. Pp. 354. Price £29.00 (U.K. correspondence with Herbert (April 1839) on the effects addresses), £31.00 (overseas addresses). ISBN of hybridisation in plants; with Waterhouse (July- 0854032622. August 1843) on the principles of classification; and a questionnaire about the effects of crossing in animals The volume of literature dealing with DNA sequence that Darwin had printed and distributed early in 1839 data is so large that any book on the subject that contains to a number of animal breeders (Appendix V), two less than 170 leaves is to be welcomed. Thus this volume replies to which are included in this correspondence. retains its appeal despite the passage of 2 years since There is much else besides scientific correspondence the symposium was held. It contains a collection of in this volume, among which that between the members articles, of a generally high standard, on areas of current of Darwin's family and his Wedgwood cousins, includ- interest in molecular evolution. The articles fall into two ing, of course, Emma, is fascinating for the close and categories—those which survey a field of work and those warm relationships, and the social life of the times, it which concentrate on one particular aspect. reveals. In short, this edition is a major work of scholar- Thus, in the first category Kimura provides a useful ship which is impossible to praise too highly and which supplement to his excellent book; Bostock discusses will serve as a rich treasure house for scientists and DNA amplification Brookfield, transposable elements historians alike for many years to come. and Avise gives a fascinating review of the population genetics of mitochondrial DNA. HartI and his colleagues MICHAEL LAWRENCE deal with plasmids in bacterial populations and Engels assesses our state of knowledge about the phenomena Department of Genetics which have come to be known as "hybrid dysgenesis" University of Birmingham in Drosophila. Engels shows that while we may know much about the elements responsible, there is a lot we still do not understand about the phenomena they cause. Population genetics and molecular evolution. In particular, we have no clear idea why there are strains Tomoko Ohta and Kenichi Aoki (eds). Japan of D. melanogaster which lack P elements completely, Scientific Societies Press, Tokyo and Springer- or rather, in Engels' words: "we have reached... the Verlag, Berlin. 1985. Pp. xvii+ 503. Price DM 118. paradoxical conclusion that all possible explanations should be discarded". ISBN 3 540 15584 8. The other contributors to this volume take the second This collection of papers is based on contributions to a approach, concentrating more on one particular com- Seminar commemorating Kimura's sixtieth birthday. ponent of their field. Fitch discusses methods of analysis The Master himself is in fine form; a somewhat deceptive of nucleotide sequence data which allow for different 158 BOOK REVIEWS rates of transition and transversion. He concludes that than 30 years ago in Demerec's Biology of Drosophila. all current methods are biased, although some perform Poulson's article has aged well, not least because of the better than others. The source of the bias, he suggests, excellence of his embryology, but Demerec's book has is an uneven distribution along nucleotide sequences of been out of print for years. Although many fly labs the probability of substitution. Bodmer et al. discuss probably have a dog-eared copy of Poulson's article, we recombination and gene clusters in the human genome do indeed need "a comprehensive monograph on the with particular reference to HLA genes. Smithies and morphology of embryonic development in the fruitfly" Powers are also concerned with the nature of recombina- to take account of the work which has been done since tion events and conclude that a large number of very 1950 and the much wider audience which now exists for small gene conversion events have occurred in the anything connected with Drosophila. human gammaglobin region. Several of these are iden- Whether Campos-Ortega and Hartenstein have tified apparently on the basis of single or double nucleo- actually produced what we want is of course another tide substitutions. They do not, however, consider the matter. The framework on which their book rests is a possibility that uneven mutation rates would also detailed description of embryonic stages in living and generate this type of event. The quantitative background fixed embryos. Each stage is represented in a summary to the processes are not considered in this paper or, diagram, in photographs of living embryos and in sec- surprisingly, in that by Bodmer. tions of fixed embryos embedded in plastic. The text is While R. B. Flavell provides a useful and informative written in a quaint and idiosyncratic version of English discussion about satellite DNA and plant chromosome but the sectioned embryos are very good indeed, and at structure, McGregor attempts to ask the "right ques- its best, the book serves as a guide to the sequence and tions" about satellite DNA. What he did not answer was pattern of events in the developing embryo which can "why newts?" Finally, Dover and Tautz continue the rapidly and successfully take the unitiated from the sort pattern of providing a useful introduction to their area of embryo they might find in the bottom of a petri dish of interest, but anyone who is familiar with the senior to the fine details of development in particular organ author will not be surprised to find not one but three systems and tissues with which they are concerned. The disparate fields being introduced in the same article. difficulty is that the material the authors deal with is They are all, of course, revolutionary or, at least, not almost exclusively their own, and while this gives them conventionally Darwinian. One of these is "molecular the advantage of covering familiar ground, it also pro- coevolution". This refers to epistatic fitness effects duces curious gaps in the subject. For example, the book between genes whose products form a functionally inter- is almost entirely about the development of larval cells, acting unit. Put that way, though, it sounds rather too even though the setting aside of the adult cells is a "Darwinian". distinctive and rather important aspect of embryogenesis This is definitely a useful collection of articles. Some in a holometabolous insect. of them will age more rapidly than others, but all should Techniques which were never available to Poulson remain useful for another few years. are rapidly improving our knowledge of the first 24 hours in the life of the fly. The field is now moving so quickly ANDREW LEIGH BROWN that the authors must have known from the outset that Department of Genetics the book was bound to be flawed in its details and it University of Edinburgh will be up to them to improve it if it goes into another edition. For the moment they have given us their version of fly embryology. There will be other versions, but for better or worse theirs is likely to be the standard reference for Drosophila embryology for some time to come.
Recommended publications
  • 701.Full.Pdf
    THE AVERAGE NUMBER OF GENERATIONS UNTIL EXTINCTION OF AN INDIVIDUAL MUTANT GENE IN A FINITE POPULATION MOT00 KIMURA' AND TOMOKO OHTA Department of Biology, Princeton University and National Institute of Genetics, Mishima, Japan Received June 13, 1969 AS pointed out by FISHER(1930), a majority of mutant genes which appear in natural populations are lost by chance within a small number of genera- tions. For example, if the mutant gene is selectively neutral, the probability is about 0.79 that it is lost from the population during the first 7 generations. With one percent selective advantage, this probability becomes about 0.78, namely, it changes very little. In general, the probability of loss in early generations due to random sampling of gametes is very high. The question which naturally follows is how long does it take, on the average, for a single mutant gene to become lost from the population, if we exclude the cases in which it is eventually fixed (established) in the population. In the present paper, we will derive some approximation formulas which are useful to answer this question, based on the theory of KIMURAand OHTA(1969). Also, we will report the results of Monte Carlo experiments performed to check the validity of the approximation formulas. APPROXIMATION FORMULAS BASED ON DIFFUSION MODELS Let us consider a diploid population, and denote by N and Ne, respectively, its actual and effective sizes. The following treatment is based on the diffusion models of population genetics (cf. KIMURA1964). As shown by KIMURAand OHTA (1969), if p is the initial frequency of the mutant gene, the average number of generations until loss of the mutant gene (excluding the cases of its eventual fixation) is - In this formula, 1 On leave from the National Institute of Genetics, Mishima, Japan.
    [Show full text]
  • National Institute of Genetics Japan
    NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 20 1969 Publi8l&ed bll THE NATIONAL INS'ITI'UTE OF GENETICS Mitlima. Simoka-ken. Japtm 1970 Annual Report of the National Institute of Genetics No. 20, 1969 Published by The National Institute of Genetics, Japan 1970 CONTENTS General statement 1 Staff..................................... .. 2 Council............................................................ 5 Association for propagation of the knowledge of genetics... 5 Projects of research for 1969 ................ 6 Researches carried out in 1969 .......................... 9 1. Cytogenetics Segregation of three types of the largest No.1 (A-I) chromosome in Rattus rattus bred in a population room. YOSIDA, T. H. and TSUCHIYA, K. 9 Polymorphism of No.9 (A-9) and No. 13 (A-13) autosomes in Rattus rattus collected in Japan. YOSIDA, T. H. and TSUCHIYA, K. and MASUJI, H.......................................... 10 Frequency of chromosome polymorphism in Rattus rattus col- lected in East and Southeast Asia. YOSIDA, T. H. and TSUCHIYA, K. 11 Fl and F2 hybrids between Asian and Oceanian black rats with different karyotypes. YOSIDA, T. H., KATO, H. and SAKAKI- BARA, K.................................................... 13 Karyotypes of black rats, Rattus rattus, obtained from Honolulu, Hawaii. YOSIDA, T. H. and TSUCHIYA, K. 14 Local differences in the frequencies of chromosome polymorphism in the house rat, Rattus rattus, in Japan. YOSIDA, T. H., TSUCHIYA, K. and SONODA, J. 15 Karyotypes of Rattus bowersii collected in Malaysia. YOSIDA, T. H. and TSUCHIYA, K. 16 Protective effects of protamine sulfate on disintegration of isolated metaphase chromosomes. KATO, H., SEKIYA, K. and YOSIDA, T. H. 17 A preliminary study on the uptake of isolated nuclei by mam­ malian cells in vitro.
    [Show full text]
  • Manipulating Underdetermination in Scientific Controversy: the Case of the Molecular Clock
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 9-1-2007 Manipulating Underdetermination in Scientific Controversy: The Case of the Molecular Clock Michael Dietrich Dartmouth College Robert A. Skipper University of Cincinnati Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael and Skipper, Robert A., "Manipulating Underdetermination in Scientific Controversy: The Case of the Molecular Clock" (2007). Open Dartmouth: Published works by Dartmouth faculty. 16. https://digitalcommons.dartmouth.edu/facoa/16 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Manipulating Underdetermination in Scientiªc Controversy: The Case of the Molecular Clock Michael R. Dietrich Dartmouth College Robert A. Skipper, Jr. University of Cincinnati Where there are cases of underdetermination in scientiªc controversies, such as the case of the molecular clock, scientists may direct the course and terms of dispute by playing off the multidimensional framework of theory evaluation. This is because assessment strategies themselves are underdetermined. Within the framework of assessment, there are a variety of trade-offs between differ- ent strategies as well as shifting emphases as speciªc strategies are given more or less weight in assessment situations. When a strategy is underdetermined, scientists can change the dynamics of a controversy by making assessments using different combinations of evaluation strategies and/or weighting what- ever strategies are in play in different ways.
    [Show full text]
  • The Average Number of Generations Until Fixation of a Mutant Gene in a Finite Population'
    THE AVERAGE NUMBER OF GENERATIONS UNTIL FIXATION OF A MUTANT GENE IN A FINITE POPULATION' MOT00 KIMURA AND TOMOKO OHTA, National Institute of Genetics, Mishima, Japan Received July 26, 1968 A mutant gene which appeared in a finite population will eventually either be lost from the population or fixed (established) in it. The mean time until either of these alternative events takes place was studied by WATTERSON(1962) and EWENS(1963). They made use of a method previously announced by DARL- ING and SIEGERT(1953), and, independently by FELLER(1954). Actually, DARL- ING and SIEGERTrefer to its application to genetics. From the standpoint of population genetics, however, it is much more desirable to determine separately the mean time until fixation and that until loss. Since the gene substitution in a population plays a key role in the evolution of the species, it may be of particular interest to know the mean time for a rare mutant gene to become fixed in a finite population, excluding the cases in which such a gene is lost from the population. In the present paper, a solution to this problem will be presented together with Monte Carlo experiments to test some of the theoretical results. Throughout this paper, the senior author (M. K.) is responsible for the mathematical treatments, while the junior author (T. 0.) is responsible for the numerical treatments based on computers. BASIC THEORY Let us consider a diploid population consisting of N individuals and having the variance effective number Ne, which may be different from the actual number (for the definition of Ne, see KIMURAand CROW1963).
    [Show full text]
  • National Institute of Genetics Japan
    NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 19 1968 Published bll THE NATIONAL INSTITUTE OF GENETICS Misima. Sizuoka·ken, Japan 1969 Annual Report of the National Institute of Genetics No. 19, 1968 Published by The National Institute of Genetics, Japan 1969 CONTENTS General statement. ................................................. 1 Research member.................................................. 2 Council............................................................ 5 Projects of research for 1968....................................... 6 Researches carried out in 1968 ..................................... 9 I. Cytogenetics Scientific expedition for the study of rodents to South East Asia and Oceania. I. Members, aims and schedule of the scienti- fic expedition. YOSIDA, T. H. 9 Scientific expedition for the study of rodents to South East Asia and Oceania. II. Species and chromosome numbers of rodents collected from South East Asia and Oceania. YOSIDA, T. H., TSUCHlYA, K. and IMAI, H. T......................... 10 Scientific expedition for the study of rodents to South East Asia and Oceania. III. Chromosomal polymorphism and new karyotypes of black rat, Rattus rattus, collected in South East Asia and Oceania. YOSIDA, T. H. and TSUCHIYA, K......... 11 Scientific expedition for the study of rodents to South East Asia and Oceania. IV. Comparative idiogram analysis in several species belonging to genus Rattus collected from South East Asia and Oceania. YOSIDA, T. H. and TSUCHlYA, K......... 12 Scientific expedition for the study of rodents to South East Asia and Oceania. V. Breeding of wild rodents collected from South East Asia and Oceania. TSUCHIYA, K., YOSIDA, T. H... 13 Rat metaphase chromosomes incorporated into mouse metaphase cells. YOSIDA, T. H. and SEKIGUCHl, T...................... 15 Autoradiographic analysis of the rate of protein synthesis in diploid and tetraploid MSPC-l myeloma cells.
    [Show full text]
  • The Neoselectionist Theory of Genome Evolution
    The neoselectionist theory of genome evolution Giorgio Bernardi* Molecular Evolution Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved April 4, 2007 (received for review February 22, 2007) The vertebrate genome is a mosaic of GC-poor and GC-rich isoch- of chance in evolution. A very significant modification of the ores, megabase-sized DNA regions of fairly homogeneous base neutral theory was the nearly neutral theory of Ohta (11, 12), composition that differ in relative amount, gene density, gene who proposed that a substantial fraction of changes are caused expression, replication timing, and recombination frequency. At by random fixation of nearly neutral changes, a class that the emergence of warm-blooded vertebrates, the gene-rich, mod- ‘‘includes intermediates between neutral and advantageous, as erately GC-rich isochores of the cold-blooded ancestors underwent well as between neutral and deleterious classes’’ (13). The first a GC increase. This increase was similar in mammals and birds and four schemes of Fig. 1 display a qualitative picture of the classical was maintained during the evolution of mammalian and avian theories just mentioned. orders. Neither the GC increase nor its conservation can be ac- All classical theories proposed that natural selection acted on counted for by the random fixation of neutral or nearly neutral the ‘‘phenotype’’ [called the ‘‘classical phenotype’’ by Bernardi single-nucleotide changes (i.e., the vast majority of nucleotide and Bernardi (14), to distinguish it from the ‘‘genome pheno- substitutions) or by a biased gene conversion process occurring at type’’ presented below].
    [Show full text]
  • National Institute of Genetics Japan
    ISSN 0077-4995 NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 40 1989 Published by THE NATIONAL INSTITUTE OF GENETICS Mi.ima, Sizuoka-ken, Japan 1990 Annual Report of the National Institute of Genetics No. 40, 1989 Published by The National Institute of Genetics, Japan 1990 CONTENTS General statement .........................................I Staff 3 Council and Advisory Committee. ................................ 6 Association for propagation of the knowledge of genetics 8 Projects of research for 1989 9 Research activities in 1989 14 I. Molecular Genetics Promoter selectivity of Escherichia coli RNA polymerase, I. Effect of base substitutions in promoter - 35 region on the promoter strength. KOBAYASHI, M., NAGATA, K. and ISHIHAMA, A. ... 14 The promoter selectivity of Escherichia coli RNA polymerase, II. Random screening of promoters and classification based on the promoter strength. KUBOTA, M., YAMAZAKI, Y. and ISHIHAMA, A. 15 Promoter selectivity of Escherichia coli RNA polymerase, III. Structural and functional modulations of RNA polymerase during growth phase transition. OZAKI, M., FUJITA, N., WADA, A. and ISHIHAMA, A. ..... 16 Structural modulation of ribosomes during growth phase transition of Escherichia coli. WADA, A., YAMAZAKI, Y., FUJITA, N. and ISHIHAMA, A. 17 The molecular anatomy of Escherichia coli RNA polymerase: Func­ tional mapping of the a subunit. IGARASHI, K., HAYWARD, R. S., FUJITA, N., YAMAGISHI, M. and ISHIHAMA, A. 18 Promoter selectivity of Micrococcus luteus RNA polymerase: Identification and characterization of the major sigma factor. NAKAYAMA, M., FUJITA, N., OSAWA, S. and ISHIHAMA, A..... 19 Molecular mechanisms of transcription and replication of phage Qfi: Cloning, sequencing and mapping of host factor. KAJI- TANI, M. and ISHIHAMA, A.
    [Show full text]
  • The Crafoord Prize in Biosciences 2015
    THE CRAFOORD PRIZE IN BIOSCIENCES 2015 POPULAR SCIENCE BACKGROUND The Crafoord Prize in Biosciences 2015 The Crafoord Prize in Biosciences 2015 is awarded to the geneticists Richard Lewontin, USA, and Tomoko Ohta, Japan, for their contributions to knowledge of genetic variation. Thanks to Lewontin and Ohta, we know that the genetic variation within populations of plants and animals is many times greater than science once thought – and we understand why. The late twentieth century and early twenty-first century have seen a revolution in genetic research. New techniques for DNA sequencing have resulted in the rapid growth of knowledge in many areas of biology, including ecology, evolution and systematics. The influence of genetics can also be seen in popular culture, where TV series’ crime scene investigators search for traces of DNA on a hunt for the killer. These traces are able to reveal who were at the scene of the crime because each person’s genotype is as unique as his or her fingerprints. This doesn’t only apply to humans, but to all animals and plants that reproduce sexually; there is considerable genetic variation between individuals of the same species and in the same population. This variation is so significant that we can be certain that two individuals do not have identical DNA even if they are closely related. The only exception to this is identical (monozygotic) siblings. Knowledge of the great genetic variation found within populations and each individual’s unique genotype is now a well-integrated element of our understanding of the world, as well as fundamental to science.
    [Show full text]
  • Random Genetic Drift & Gene Fixation
    Random Genetic Drift & Gene Fixation Arie Zackay July 31, 2007 Abstract Random Genetic Drift is one of the evolutionary forces that effects the distribution of alleles and changes their frequencies in populations. The main idea behind this theory is that genetic changes can happen randomly. This can be explained through the Bottleneck effect. There are two main factors that have an influence on genetic drift, the first one is the Effective Population Size Ne , which creates different genetic drift outcomes within different population sizes. The second factor that influences the rate of genetic drift is the selective advantage of a drifted allele. With these fac- tors it is possible to calculate the time and probability of an allele fixation in any chosen population. 1 Introduction In order to understand the phenomenon known to us as Random Genetic Drift, we must first of all define the meaning of Population Genetics. Population Ge- netics is the study of the changes in distribution of alleles in a certain population, considering the influence of the following evolutionary forces: natural selection, genetic drift, mutation, gene flows and selective mating. The main goals of this field of study is to determine how the frequency of a mutant gene will change over time under the influence of evolutionary forces, to examine how genetic variability is maintained, and to establish the probability that a new mutant completely replaces existing variants of genes, a phenomenon called Fixation. There are a few instigators that can cause changes in the evolution of a popu- lation. Such instigators might include: • It can be caused by a mutation with a genetic advance.
    [Show full text]
  • Dobzhansky's Evolution of Tropical Populations, and the Science and Politics Of
    CARVALHO, Tito. “A most bountiful source of inspiration:” Dobzhansky’s evolution of tropical populations, and the science and politics of genetic variation. História, Ciências, Saúde – Manguinhos, Rio de Janeiro, v.26, n.1, “A most bountiful jan.-mar. 2019, p.281-297. Abstract source of inspiration:” Theodosius Dobzhansky has been studied for how he integrated Dobzhansky’s evolution of field naturalism and laboratory experimentation in ways that helped tropical populations, and produce the Modern Synthesis, as well as how he leveraged biological expertise to support liberal and cosmopolitan the science and politics of values amidst Second World War and the Cold War. Moreover, Dobzhansky genetic variation has been central in analyses of the institutionalization of genetics in Brazil, where he spent several years. This article “A mais abundante fonte situates Dobzhansky’s Brazilian research within the science of variation and the de inspiração”: Dobzhansky politics of diversity. I conclude by raising questions about how the ways in which e sua evolução sobre as science figured in politics depended on ideas about the role of scientists in society whichwere advanced in populações dos trópicos, parallel, suggesting research on the “co- a ciência e a política da production” of natural and social orders. Keywords: evolutionary genetics; variabilidade genética transnational science; eugenics; race; tropics; Theodosius Dobzhansky (1900- 1975). Resumo Theodosius Dobzhansky tem sido estudado pelo modo como ele integrou o naturalismo de campo e a experimentação científica, que deram origem à síntese moderna, assim como a alavanca que ele deu ao conhecimento biológico para apoiar valores liberais e cosmopolitas em meio à Segunda Guerra Mundial e à Guerra Fria.
    [Show full text]
  • Evolutionary Population Genetics of Promoters: Predicting Binding Sites and Functional Phylogenies
    Evolutionary population genetics of promoters: Predicting binding sites and functional phylogenies Ville Mustonen and Michael La¨ ssig* Institut fu¨r Theoretische Physik, Universita¨t zu Ko¨ln, Zu¨lpicherstrasse 77, 50937 Cologne, Germany Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved August 8, 2005 (received for review June 30, 2005) We study the evolution of transcription factor-binding sites in neutral background DNA. As an important step in this direction, prokaryotes, using an empirically grounded model with point the notion of a fitness landscape for binding-site sequences has been mutations and genetic drift. Selection acts on the site sequence via introduced, where the fitness of a site depends on the binding its binding affinity to the corresponding transcription factor. Cal- energy of the corresponding factor (8). The evolutionary impor- ibrating the model with populations of functional binding sites, we tance of the binding energy has also been highlighted in ref. 9, where verify this form of selection and show that typical sites are under it was shown that nucleotide substitution rates within functional substantial selection pressure for functionality: for cAMP response sites in Escherichia coli depend on the energy difference induced by protein sites in Escherichia coli, the product of fitness difference the substitution as predicted from the position weight matrix. The and effective population size takes values 2N⌬F of order 10. We biophysics of factor-DNA binding imposes stringent constraints on apply this model to cross-species comparisons of binding sites in the form of the fitness landscape (10) and has important conse- bacteria and obtain a prediction method for binding sites that uses quences for bioinformatic binding site searches (11).
    [Show full text]
  • Population Genetics, a Concise Guide
    Population Genetics vdxiaovd Population Genetics A Concise Guide John H.vvvspie THEJOHNS HOPKINS UNIVERSITYPRESS Baltimore and London ._./,.,.I.,.,_,_,,.,,... ...l,.,ll.”_.~....,.,.,., ,.*..I .....I..., ..... ,..I.......,.. ,’. , , ’ 0 1998 The JohnsHopkine University Press All rights reserved. Published 1998 Printed in the United Statesof America on acid-free paper 9876543 The JohnsHopkins University Press 2715 North Charles Street Baltimore, Maryland 21218-4363 www.press.jhu.edu Library of Congress Cataloging-in-Publication Data will be'found at the endof this book. A catalog record for this book is available from the British Library. ISBN 0-8018-5764-6 ISBN 0-8018-5755-4(pbk.) To Robin Gordon Contents List of Figures ix Preface xi 1 The Hardy-Weinberg Law 1 1.1 DNA variationin Drosophila .................... 2 1.2 Loci and alleles ............................ 5 1.3 Genotypeand allele frequencies ................... 9 1.4 Randomly matingpopulations .................... 11 1.5 Answers to problems ......................... 17 2 Genetic Drift 19 2.1 A computersimulation ........................ 20 2.2 The decay of heterozygosity ..................... 22 2.3 Mutationand drift .......................... 27 2.4 Theneutral theory .......................... 32 2.5 Effective population size ....................... 35 2.6 The coalescent ............................ 38 2.7 Binomial sampling .......................... 42 2.8 Answers to problems ......................... 47 Natural Selection 3 Natural 49 3.1 The fundamental model ......................
    [Show full text]