Odonatological Abstract Service

Total Page:16

File Type:pdf, Size:1020Kb

Odonatological Abstract Service Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B, D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Dr. Milen Marinov, 7/160 Rossall Str., Merivale 8014, Christchurch, New Zealand. E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 - was conducted during July September 1996. The springs 1997 were primarily in central and northern Ohio on a variety 12122. Fahrngruber, H.; Wenger, A. (1997): Nachweis of surficial geology settings including karst, till, and ex- von Gomphus flavipes (Charpentier, 1825) bei Krems / posed bedrock. Water quality varied with the ground- NÖ. Lanius, Krems 1996-1997: 73-75. (in German) [As water source and local environment (agriculture, wood- a result of a road kill, Stylurus flavipes was found on 24- land). The algal community varied greatly in diversity VII-1997 along the river Krems, near Senftenberg, Nie- among sites. One woodland site (Styx River) had only derösterreich, Austria] Address: not stated three taxa. In contrast, Cedar Bog (an open alkaline fen) had a great diversity of diatoms (246 taxa) with a total 12123. Taylor, P.D. (1997): Empirical explorations of of 258 taxa. At most locations, between 15 and 56 taxa landscape connectivity. Proceeding of the sixth annual were reported. Like the algal community, the diversity of International Association for Landscape Ecology (UK the macroinvertebrate fauna differed considerably among - Region) conference, 9th 11th September 1997. Eds: sites, ranging from 2 to 40 identified taxa. This variation - Cooper, A. and J. Power. IALE (UK): 11 18. (in English) may have been due to the sitespecific differences in ["Movement plays a fundamental role in the dynamics water chemistry and/or habitat. Computation of Jaccard of populations, and is influenced by differences in the similarity coefficients for both the algal and macroinver- patterning of resources on the landscape. The interac- tebrate data resulted in low similarity values among tion between the ability of an organism to move through sites. The data collected provide a basis for proposed different types of landscape and the relative size and sampling methods (spring biotic survey protocols) that positioning of resources in the landscape is termed could be used for the range of spring/seep types found - landscape connectivity. Experimental manipulations ha in Ohio." (Authors) The following taxa are listed: Anax ve been made to measure landscape connectivity for junius, Cordulegaster sp., Libellula sp., Pachydiplax two species of damselflies (Calopteryx maculata and C. longipennis, Enallagma sp., Ischnura verticallis, Lestes aequabilis) in completely forested, completely open and rectangularis.] Address: Vis, M., Dept of Environmental mixed landscapes. Experimentally, individuals have & Plant Biology, Ohio Univ., Athens, OH 45701, USA been translocated between landscapes to measure as- pects of how they move through the different types of landscapes. I present an overview of these experiments 2001 and results and then discuss their importance as meth- 12126. ods for further exploring the important concept of con- Goddard, S. (2001): The Scarce Chaser (Libel- lula fulva) on the River Stour. Trans. Suffolk Nat. Soc. nectivity." (Author)] Address: Taylor, P., Biology Depart- - ment, Acadia University, Wolfville, Nova Scotia, Canada 37: 81 82. (in English) [Recent records between 1997 B4P 2R6. E-mail: [email protected] and 2000 along the River Stour, UK are brought on rec- ord.] Address: Goddard, S., 47 Colchester Road, Ips- 12124. Wenger, A. (1997): Die Libellenfauna eines Fo- wich IP4 3BT, UK lienteiches. Lanius, Krems 1996-1997: 57-62. (in Ger- 12127. Sugimura, M.; Futahashi, R. (2001): Second re- man) [In early 1996, a garden pond was created. The - development of the colonisation by dragonflies in 1996 cord of an interspecific hybrid between Sympetrum ero ticum eroticum (Selys, 1883) and Sympetrum parvulum and 1997 is outlined. Anax imperator inspected the pond - before it was filled with water.] Address: not stated (Bartenef, 1912) (Libellulidae). Tombo 43: 51 54. (in Japanese, with English summary) [Japan; a supposed interspecific hybrid between the two taxa, is reported.] 1999 Address: Futahashi, R., Fujiwara Lab., Univ. Tokyo, Bi- osci. Bldg 501, Kashiwa, Chiba, 377-8562, Japan 12125. Hambrook, J.A.; Armitage, B.J.; Vis, M. (1999): Algal and macroinvertebrate assemblages of selected Ohio springs. Ohio Biological Survey Notes 2: 1-24. (in 2002 English) ["A qualitative study of the algal flora, macroin- 12128. vertebrate fauna, and water quality of ten Ohio springs Malavasi, D. (2002): Note sull'odonatofauna delle zone umide della Bassa Pianura modenese. Natu- Odonatological Abstract Service 37 (May 2013) - page 1 ra Modenese 6: 59-64. (in Italian, with English sum- /iss1/10: 29-40. (in English) ["Fluctuating asymmetry mary) [" Notes on dragonfly community of the Modena (FA), or subtle random deviations from perfect bilateral lowland wetlands: Notes on Odonata living in man- symmetry, has recently become a useful tool in allowing made wetlands, ponds and canals in Modena lowlands, researchers to understand more about an organism's are reported. The area is a typical intensive agriculture- health, fitness, developmental stability and environmen- based lowland,... The following list includes all the spe- tal stressors. Ultimately, FA studies can be used as an cies observed: Sympecma fusca, Lestes barbarus, indirect measurement of the quality of an aquatic sys- Platycnemis pennipes Ischnura elegans, Enallagma cy- tem over time. We measured and examined the femur athigerum, Erythromma lindeni, Coenagrion puella, segments of the larval damselfly, C. maculata from sites Erythromma najas, Aeshna cyanea, A. mixta, A. affinis, on the Town, Hockomock, and Salisbury Plain Rivers, of Anax imperator, Hemianax ephippiger, Gomphus vulga- Plymouth County, Massachusetts to determine FA lev- tissimus, Onychogomphus forcipatus, Libellula depress- els. After accounting for measurement error, preliminary sa, L. fulva, Orthetrum brunneum, O. albistylum, O. can- results show that variations in symmetry are not corre- cellatum, Crocothemis erythraea, Sympetrum striola- lated to individual trait size. Also, the Hockomock River tum, S. meridionale, S. sanguineum." (Author)] Address: site showed FA levels thee times higher than the Salis- Malavasi, D., Studio Associato GECO, Via San Fausti- bury Plain river, and twice that of the Town River. Final- no, 23, 41037 Mirandola, Italy. E-mail: davidemalava- ly, severe femur deformation of some individuals at all [email protected] sites suggests that other, more serious developmental 12129. - or environmental factors may be inhibiting normal de- Matushkina, N.A.; Gorb, S.N. (2002): A check velopment. Results from a simple two-way ANOVA of list of substrates for endophytic oviposition of some Eu- differences in right and left femur segments and a Kol- ropean dragonflies (Insecta: Odonata). J. Kharkov Ent. - mogorov Smirnov test for normality strongly suggest Soc. 10: 108 118. (in Russian) ["Compiled from original that the first femur of C. maculata is a useful trait for FA and literature data, we have drawn up a list of endo- measurement." (Author)] Address: not stated phytic oviposition substrates for some European drag- onflies. This list can be used for ecological and faunistic 12134. Leeming, D.; Warrington, S. (2004): An aquatic studies in a variety of aquatic ecosystems. In some invertebrate survey of Ickworth Park, Suffolk. Trans. cases, the list can help predict the occurrence of a spe- Suffolk Nat. Soc. 40: 55-71. (in English) [At eight of the cies in a given area." (Authors)] Address: Gorb, S.N., twelve studied ponds the following Odonata were rec- Functional Morphology and Biomechanics, Zoological orded: Calopteryx splendens, Coenagrion puella, Enal- Institute, Christian-Albrecht University of Kiel, 24098 lagma cyathigerum, Pyrrhosoma nymphula, Ischnura Kiel, Germany. E-mail: [email protected] elegans, Aeshna cyanea, A. grandis, Libellula depress- sa, Sympetrum striolatum, and S. sanguineum.] Ad- 12130. Sherman, N. (2002): The discovery and obser- - dress: Warrington, S., Regional Nature Conservation vations of Small Red eyed Damselfly (Erythromma Advisor, East of England, The National Trust, The Dairy viridulum) at a Suffolk site in 2001. Trans. Suffolk Nat. - - - - House, Ickworth, Bury St. Edmunds, IP29 5QE, UK. E Soc. 38: 124 125, pl. (in English) [15 VIII 2001, without mail: [email protected] locality dates.] Address: Sherman, N., 98, Dover Road, Ipswich, Suffolk IP3 8JH 12131. Zhou, J.; Xie, J.-h.; Dai, Q.; Zeng, Y.-j.; Liu, J.- 2005 - - x.; Zhang, W. g.; Zhang, S. y. (2002): Feeding behav- 12135. ioral strategy of Rhinolophus pearsoni in summer. Zoo- Martinov, V.V.; Martinov, A.V. (2005): To the logical Research 2002(2): 120-128. (in Chinese, with knowledge of dragonflies (Insecta: Odonata) of tne Na- English summary) [According to table 1, the diet of 32 ture Reserve ‘Medobory’ and surrounding areas. The Kharkov Entomological Society Gazette 2004 (2005) specimens of R. pearsoni contained 912 specimens of - Aeshnidae.] Address: Zhou, J., Institute
Recommended publications
  • The Mitochondrial Genomes of Palaeopteran Insects and Insights
    www.nature.com/scientificreports OPEN The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships Nan Song1*, Xinxin Li1, Xinming Yin1, Xinghao Li1, Jian Yin2 & Pengliang Pan2 Phylogenetic relationships of basal insects remain a matter of discussion. In particular, the relationships among Ephemeroptera, Odonata and Neoptera are the focus of debate. In this study, we used a next-generation sequencing approach to reconstruct new mitochondrial genomes (mitogenomes) from 18 species of basal insects, including six representatives of Ephemeroptera and 11 of Odonata, plus one species belonging to Zygentoma. We then compared the structures of the newly sequenced mitogenomes. A tRNA gene cluster of IMQM was found in three ephemeropteran species, which may serve as a potential synapomorphy for the family Heptageniidae. Combined with published insect mitogenome sequences, we constructed a data matrix with all 37 mitochondrial genes of 85 taxa, which had a sampling concentrating on the palaeopteran lineages. Phylogenetic analyses were performed based on various data coding schemes, using maximum likelihood and Bayesian inferences under diferent models of sequence evolution. Our results generally recovered Zygentoma as a monophyletic group, which formed a sister group to Pterygota. This confrmed the relatively primitive position of Zygentoma to Ephemeroptera, Odonata and Neoptera. Analyses using site-heterogeneous CAT-GTR model strongly supported the Palaeoptera clade, with the monophyletic Ephemeroptera being sister to the monophyletic Odonata. In addition, a sister group relationship between Palaeoptera and Neoptera was supported by the current mitogenomic data. Te acquisition of wings and of ability of fight contribute to the success of insects in the planet.
    [Show full text]
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Geographical Variation in the Wing Morphology of the Golden-Ringed
    Bull. Natl. Mus. Nat. Sci., Ser. A, 38(2), pp. 65–73, May 22, 2012 Geographical Variation in the Wing Morphology of the Golden-ringed Dragonfly Anotogaster sieboldii (Selys, 1854) (Odonata, Cordulegastridae) Detected by Landmark-based Geometric Morphometrics Takuya Kiyoshi1 and Tsutomu Hikida2 1 Department of Zoology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki, 305–0005 Japan E-mail: [email protected] 2 Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto, 606–8502 Japan (Received 18 January 2012; accepted 4 April 2012) Abstract A previous molecular phylogenetic study showed that Anotogaster sieboldii has at least 6 monophyletic groups that are allopatrically distributed in the northern area of Asia (Japanese main islands and Korean Peninsula), Amamioshima, Okinawajima, Yaeyama islands, Taiwan and East China. These groups are difficult to distinguish by qualitative genital morphology; however, canonical variate analysis and linear discriminant analysis of the hind wing shape have been used to clearly distinguish them from each other. In the present study, multiple comparisons of the lengths of the abdomen and hind wing showed that these lengths did not differ significantly among the groups. In particular, the variation in the size range, in the lineage from the northern area, widely overlapped that of the lineages from the other areas. In evaluating the morphological differ- ences, the wing shape was found to be more sensitive than other size variables. Key words : geometric morphometrics, shape, Odonata. Introduction groups (Askew, 2004). Anotogaster sieboldii (Selys, 1854) is a large The family Cordulegastridae of the order Odo- cordulegastrid dragonfly that is distributed in nata consists of 40 species belonging to 5 genera Insular East Asia, Korean Peninsula and East (Tsuda, 2000).
    [Show full text]
  • Th`Ese Laurent PELOZUELO Maˆıtrede Conf´Erence Co-Directeur De Th`Ese Nicolas GOUIX Docteur En ´Ecologie Invit´E Frederick JACOB Ing´Enieur´Ecologue Invit´E
    THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´ee et soutenue le 26/06/2018 par : Alice S. DENIS Impacts de l’anthropisation sur la diversit´eodonatologique au sein des cours d’eau : vers une meilleure prise en compte des esp`ecesde la Directive Habitats Faune Flore JURY Frank D’AMICO Maˆıtrede conf´erence Rapporteur Beat OERTLI Professeur d’Universit´e Rapporteur Boudjema´ SAMRAOUI Professeur d’Universit´e Rapporteur Geraldine´ LOOT Professeur d’Universit´e Examinatrice Fred´ eric´ SANTOUL Maˆıtrede conf´erence Co-Directeur de th`ese Laurent PELOZUELO Maˆıtrede conf´erence Co-Directeur de th`ese Nicolas GOUIX Docteur en ´ecologie Invit´e Frederick JACOB Ing´enieur´ecologue Invit´e Ecole´ doctorale et sp´ecialit´e : SDU2E : Ecologie´ fonctionnelle Unit´e de Recherche : Laboratoire d’Ecologie Fonctionnelle EcoLab (UMR 5254) Directeur(s) de Th`ese : Fr´ed´ericSANTOUL et Laurent PELOZUELO Rapporteurs : Frank D’AMICO, Beat OERTLI et Boudj´emaSAMRAOUI A ceux sans qui je n’y serais pas arrivée... « L’avenir n’est pas ce qui va arriver, mais ce que nous allons en faire. » Henri Bergson Remerciements Voilà, j’y suis... Ce moment à la fois tant attendu et tant redouté de la rédaction des re- merciements. Tant attendu car il signifie l’aboutissement de ce travail, un bout de vie qui se termine, une page qui se tourne. Tant redouté également car je suis si reconnaissante envers tellement de personnes que je ne veux en oublier aucune.
    [Show full text]
  • Critical Species of Odonata in Europe
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/228966602 Critical species of Odonata in Europe ARTICLE in INTERNATIONAL JOURNAL OF ODONATOLOGY · JULY 2004 Impact Factor: 0.5 · DOI: 10.1080/13887890.2004.9748223 CITATIONS DOWNLOADS VIEWS 25 181 148 5 AUTHORS, INCLUDING: Adolfo Cordero-Rivera University of Vigo 151 PUBLICATIONS 1,594 CITATIONS SEE PROFILE Frank Suhling Technische Universität Braun… 79 PUBLICATIONS 793 CITATIONS SEE PROFILE Available from: Frank Suhling Retrieved on: 13 September 2015 Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation Critical species of Odonata in Europe Göran Sahlén 1, Rafal Bernard 2, Adolfo Cordero Rivera 3, Robert Ketelaar 4 & Frank Suhling 5 1 Ecology and Environmental Science, Halmstad University, P.O. Box 823, SE-30118 Halmstad, Sweden. <[email protected]> 2 Department of General Zoology, Adam Mickiewicz University, Fredry 10, PO-61-701 Poznan, Poland. <[email protected]> 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, EUET Forestal, Campus Universitario, ES-36005 Pontevedra, Spain. <[email protected]> 4 Dutch Butterfly Conservation. Current address: Dutch Society for the Preservation of Nature, P.O. Box 494, NL-5613 CM, Eindhoven, The Netherlands. <[email protected]> 5 Institute of Geoecology, Dpt of Environmental System Analysis, Technical University of Braunschweig, Langer Kamp 19c, D-38102 Braunschweig, Germany. <[email protected]> Key words: Odonata, dragonfly, IUCN, FFH directive, endemic species, threatened species, conservation, Europe. Abstract The status of the odonate fauna of Europe is fairly well known, but the current IUCN Red List presents only six species out of ca 130, two of which are actually out of danger today.
    [Show full text]
  • Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea
    insects Article Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea Da-Yeong Lee 1, Dae-Seong Lee 1, Mi-Jung Bae 2, Soon-Jin Hwang 3 , Seong-Yu Noh 4, Jeong-Suk Moon 4 and Young-Seuk Park 1,5,* 1 Department of Biology, Kyung Hee University, Seoul 02447, Korea; [email protected] (D.-Y.L.); [email protected] (D.-S.L.) 2 Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do 37242, Korea; [email protected] 3 Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; [email protected] 4 Water Environment Research Department, Watershed Ecology Research Team, National Institute of Environmental Research, Incheon 22689, Korea; [email protected] (S.-Y.N.); [email protected] (J.-S.M.) 5 Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Received: 20 September 2018; Accepted: 25 October 2018; Published: 29 October 2018 Abstract: Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry.
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • The Dragonfly Fauna of the Aude Department (France): Contribution of the ECOO 2014 Post-Congress Field Trip
    Tome 32, fascicule 1, juin 2016 9 The dragonfly fauna of the Aude department (France): contribution of the ECOO 2014 post-congress field trip Par Jean ICHTER 1, Régis KRIEG-JACQUIER 2 & Geert DE KNIJF 3 1 11, rue Michelet, F-94200 Ivry-sur-Seine, France; [email protected] 2 18, rue de la Maconne, F-73000 Barberaz, France; [email protected] 3 Research Institute for Nature and Forest, Rue de Clinique 25, B-1070 Brussels, Belgium; [email protected] Received 8 October 2015 / Revised and accepted 10 mai 2016 Keywords: ATLAS ,AUDE DEPARTMENT ,ECOO 2014, EUROPEAN CONGRESS ON ODONATOLOGY ,FRANCE ,LANGUEDOC -R OUSSILLON ,ODONATA , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII , GOMPHUS SIMILLIMUS ,ONYCHOGOMPHUS UNCATUS , CORDULEGASTER BIDENTATA ,MACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Mots-clés : A TLAS ,AUDE (11), CONGRÈS EUROPÉEN D 'ODONATOLOGIE ,ECOO 2014, FRANCE , L ANGUEDOC -R OUSSILLON ,ODONATES , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII ,GOMPHUS SIMILLIMUS , ONYCHOGOMPHUS UNCATUS ,CORDULEGASTER BIDENTATA ,M ACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Summary – After the third European Congress of Odonatology (ECOO) which took place from 11 to 17 July in Montpellier (France), 21 odonatologists from six countries participated in the week-long field trip that was organised in the Aude department. This area was chosen as it is under- surveyed and offered the participants the possibility to discover the Languedoc-Roussillon region and the dragonfly fauna of southern France. In summary, 43 sites were investigated involving 385 records and 45 dragonfly species. These records could be added to the regional database. No less than five species mentioned in the Habitats Directive ( Coenagrion mercuriale , Gomphus flavipes , G.
    [Show full text]
  • ANDJUS, L. & Z.ADAMOV1C, 1986. IS&Zle I Ogrozene Vrste Odonata U Siroj Okolin
    OdonatologicalAbstracts 1985 NIKOLOVA & I.J. JANEVA, 1987. Tendencii v izmeneniyata na hidrobiologichnoto s’soyanie na (12331) KUGLER, J., [Ed.], 1985. Plants and animals porechieto rusenski Lom. — Tendencies in the changes Lom of the land ofIsrael: an illustrated encyclopedia, Vol. ofthe hydrobiological state of the Rusenski river 3: Insects. Ministry Defence & Soc. Prol. Nat. Israel. valley. Hidmbiologiya, Sofia 31: 65-82. (Bulg,, with 446 col. incl. ISBN 965-05-0076-6. & Russ. — Zool., Acad. Sei., pp., pis (Hebrew, Engl. s’s). (Inst. Bulg. with Engl, title & taxonomic nomenclature). Blvd Tzar Osvoboditel 1, BG-1000 Sofia). The with 48-56. Some Lists 7 odon. — Lorn R. Bul- Odon. are dealt on pp. repre- spp.; Rusenski valley, sentative described, but checklist is spp. are no pro- garia. vided. 1988 1986 (12335) KOGNITZKI, S„ 1988, Die Libellenfauna des (12332) ANDJUS, L. & Z.ADAMOV1C, 1986. IS&zle Landeskreises Erlangen-Höchstadt: Biotope, i okolini — SchrReihe ogrozene vrste Odonata u Siroj Beograda. Gefährdung, Förderungsmassnahmen. [Extinct and vulnerable Odonata species in the broader bayer. Landesaml Umweltschutz 79: 75-82. - vicinity ofBelgrade]. Sadr. Ref. 16 Skup. Ent. Jugosl, (Betzensteiner Str. 8, D-90411 Nürnberg). 16 — Hist. 41 recorded 53 localities in the VriSac, p. [abstract only]. (Serb.). (Nat. spp. were (1986) at Mus., Njegoseva 51, YU-11000 Beograd, Serbia). district, Bavaria, Germany. The fauna and the status of 27 recorded in the discussed, and During 1949-1950, spp. were area. single spp. are management measures 3 decades later, 12 spp. were not any more sighted; are suggested. they became either locally extinct or extremely rare. A list is not provided.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
    International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999).
    [Show full text]
  • Effects of Amphibian Declines on Trophic Interactions in Algal
    EFFECTS OF AMPHIBIAN DECLINES ON TROPHIC INTERACTIONS IN ALGAL- INSECT NEOTROPICAL STREAM COMMUNITIES by THOMAS ROSSITER BARNUM (Under the Direction of Catherine M. Pringle) ABSTRACT Understanding the effects of biodiversity declines on communities and ecosystems is one of the current grand challenges in ecology. Much research has been devoted to quantifying the effects of species loss from primary producer communities and multi-trophic communities in mesocosms, but less is known about the effects of species loss from food webs from multi- trophic communities. Studies that quantify species loss from multi-trophic communities in the field rely on observational data of populations to infer changes in the interactions between species. However, there is a lack of field data that uses direct observations of species interactions to quantify the effects of species loss on multi-trophic communities. This collection of studies utilizes stable isotopes as well as gut analyses combined with population data to quantify the effects of amphibian declines in highland Panamanian streams on food web structure of an insect-algal community. Results showed that the loss of amphibians can result in changes of resource use by grazing insect genera, but not necessarily lead to changes in their abundance. Furthermore, amphibians had a role in structuring the diatom community that grazing insects could not duplicate, providing insight for why grazing insects did not functionally compensate for grazing tadpoles. Lastly, structure of the whole food web was more resilient to species loss than expected based on models that assume fixed trophic linkages due to a reorganization of the food web, which was driven by shifting resource use and the presence of generalist consumers that immigrated into the community following amphibian declines.
    [Show full text]