Age-Related Change in 5-HT6 Receptor Availability in Healthy Male Volunteers Measured with 11C-GSK215083 PET

Total Page:16

File Type:pdf, Size:1020Kb

Age-Related Change in 5-HT6 Receptor Availability in Healthy Male Volunteers Measured with 11C-GSK215083 PET BRIEF COMMUNICATION Age-Related Change in 5-HT6 Receptor Availability in Healthy Male Volunteers Measured with 11C-GSK215083 PET Rajiv Radhakrishnan1, Nabeel Nabulsi2, Edward Gaiser1, Jean-Dominique Gallezot2, Shannan Henry2, Beata Planeta2, Shu-fei Lin2, Jim Ropchan2, Wendol Williams1, Evan Morris2,3, Deepak Cyril D’Souza1, Yiyun Huang2, Richard E. Carson2,3, and David Matuskey1,2 1Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; 2Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and 3Department of Biomedical Engineering, Yale University, New Haven, Connecticut because it presents an attractive therapeutic target for neuropsychi- Serotonin receptor 6 (5-hydroxytrypamine-6, or 5-HT6) is a potential atric disorders. therapeutic target given its distribution in brain regions that are Functionally, 5-HT6 exhibits excitatory action, but it can also important in depression, anxiety, and cognition. This study sought colocalize with g-aminobutyric acid–ergic neurons and produce an to investigate the effects of age on 5-HT6 receptor availability using inhibition of brain activity leading to complicated and discrepant 11 C-GSK215083, a PET ligand with affinity for 5-HT6 in the striatum results (2,4). Heterogeneous effects are also seen with other neu- and 5-HT in the cortex. Methods: Twenty-eight healthy male vol- 2A rotransmitters in specific brain regions, with 5-HT antagonism unteers (age range, 23–52 y) were scanned with 11C-GSK215083 6 PET. Time–activity curves in regions of interest were fitted using a resulting in increased extracellular glutamate, dopamine, and ace- multilinear analysis method. Nondisplaceable binding potential tylcholine in the frontal cortex and hippocampus (5,6), whereas (BPND) was calculated using the cerebellum as the reference region 5-HT6 agonists have been shown to produce increased extracellu- and corrected for partial-volume effects. Results: In 5-HT6–rich lar g-aminobutyric acid release in the dorsal hippocampus, stria- areas, regional 11C-GSK215083 showed a negative correlation be- tum, and amygdala (4). Thus, with a multitude of interactions not tween BP and age in the caudate (r 5 −0.41, P 5 0.03) (14% ND fully elucidated, preclinical studies on both 5-HT6 agonists and change per decade) and putamen (r 5 −0.30, P 5 0.04) (11% change 5-HT6 antagonists have shown efficacy against depression, anxiety, per decade) but not in the ventral striatum or pallidum. A negative and cognitive impairment (1). In addition, 5-HT antagonists have correlation with age was also seen in cortical regions (r 5 −0.41, P 5 6 0.03) (7% change per decade), consistent with the literature on shown promise in the treatment of obesity (7), major depressive disorder (8), age-related cognitive decline (9), and schizophrenia 5-HT2A availability. Conclusion: To our knowledge, this was the first in vivo study on humans to examine the effect of age on 5-HT6 re- (10). Currently available antidepressants and antipsychotics have ceptor availability. The study demonstrated a significant age-related also been shown to have a strong affinity for the 5-HT6 receptor BP decline in 5-HT6 availability ( ND) in the caudate and putamen. (11,12), adding speculation that these clinical effects might, at least 11 Key Words: serotonin 6; age effects; 5-HT6; PET imaging; C- in part, be mediated through this receptor. GSK215083 Age has been associated with a decline in receptor density J Nucl Med 2018; 59:1445–1450 across several 5-HT receptor subtypes (13–15). Given that some of DOI: 10.2967/jnumed.117.206516 the potential indications, such as cognitive impairment in Alz- heimer disease and age-related cognitive decline, are related to advancing age, it is important to understand the effects of age on 5-HT6 receptors and to ascertain whether they remain an important target in older age groups. This importance is further underscored by recent negative results from 2 phase III trials of the 5-HT6 The 5-hydroxytrypamine-6 (5-HT6) receptor is a 7-transmem- brane serotonin receptor subtype and one of the 14 distinct mam- antagonist idalopirdine for cognitive impairment in Alzheimer dis- malian serotonin receptors that are expressed almost exclusively ease, despite promising results in preclinical studies (16). in the central nervous system (1,2). In vitro studies demonstrated Although age has been shown to be associated with a decline in 5-HT (14), 5-HT ,5HT (15), and 5-HT receptors (13), the that 5-HT6 receptors are localized to the striatum, hippocampus, 1B 1A 2A 4 amygdala, hypothalamus, thalamus, and cerebral cortex (3). The effects of age on 5-HT6 receptor availability in humans is not localization to both basal ganglia and limbic structures suggests known. The availability of a PET ligand for the 5-HT6 receptor that this receptor may be involved in the serotonergic control of 11C-GSK215083 offers an opportunity to examine the in vivo re- motor function, mood-dependent behavior, depression, and cognition ceptor density in healthy humans and in disease states (17,18). In 5 (3). Subsequently, more attention has recently been given to 5-HT6 vitro GSK215083 exhibits high binding affinity for 5-HT6 (pKi 11 9.8) and 5-HT2A (pKi 5 9.1) receptors. Although C-GSK215083 has high affinity for 5-HT receptors in vivo, it has a nonnegligible Received Dec. 4, 2017; revision accepted Mar. 21, 2018. 6 For correspondence or reprints contact: David Matuskey, Yale University affinity (albeit 5-fold lower) for 5-HT2A receptors in cortical re- School of Medicine, 801 Howard Ave., New Haven, CT 06520. gions (17). Therefore, whereas striatal 11C-GSK215083 signal is E-mail: [email protected] Published online Apr. 6, 2018. primarily reflective of 5-HT6 availability, its binding in the cortex COPYRIGHT © 2018 by the Society of Nuclear Medicine and Molecular Imaging. is thought to reflect 5-HT2A availability (17,18). AGE EFFECTS ON 5-HT6 RECEPTOR IN MEN • Radhakrishnan et al. 1445 In this paper, we examine the effects of age on 5-HT6 receptor sample loop preloaded with a solution of 0.5 mg of desmethyl availability in healthy male volunteers using the PET ligand 11C- GSK215083 and 1 mL of 2,2,6,6,-tetramethylpiperidine in 80 mL GSK215083. of anhydrous N,N-dimethylformamide until radioactivity peaked. The reaction mixture was allowed to stand for 5 min at ambient temperature, loaded onto the semipreparative high-performance MATERIALS AND METHODS liquid chromatography column, and purified as described as above. The product fraction was collected, diluted with 50 mL of water, Participants and loaded onto a C18 Sep-Pak classic cartridge. The cartridge was Twenty-eight healthy male volunteers (mean age, 36.0 6 9.3 y; rinsed with 10 mL of 1 mM HCl and dried. The product was then range, 23–52 y) were included in the study. All underwent a compre- eluted off the SepPak with 1 mL of ethanol (USP grade), followed hensive screening assessment that included a clinical interview, com- by 3 mL of saline (USP grade). The combined solution was finally plete physical examination with medical history, routine blood tests, passed through a sterile 0.22-mm membrane filter into a sterile electrocardiogram, and urine toxicology. Individuals were excluded if dose-vial precharged with 7 mL of USP-grade saline and 20 mLof they self-reported or evaluation revealed a diagnosis of a current or 4.2% sodium bicarbonate (USP grade). Purity and molar activity were lifetime psychiatric disorder; current or past serious medical or neu- determined using a Luna C18(2) column (5 mm, 250 · 4.6 mm) eluting rologic illness (including a history of head injury with loss of con- with a mixture of 40% acetonitrile and 60% 0.1 M ammonium formate sciousness); metal in their body, which would result in MRI exclusion; at a flow rate of 1.5 mL/min. a history of substance abuse or dependence; or illicit drug use in the previous 3 mo. Image Acquisition The study was performed under protocols approved by the Yale Structural MRI was performed on a 3-T Trio system (Siemens Human Investigation Committee, the Yale University Radiation Safety Medical Solutions) with a circularly polarized head coil for purposes Committee, the Yale–New Haven Hospital Radioactive Drug Research of excluding individuals with anatomic abnormalities and anatomi- Committee, and the Yale MRI Safety Committee. The study was cally coregistering with PET scans. The dimensions and voxel size of performed in accordance with good clinical practice guidelines, reg- MR images were 256 · 256 · 176 voxels and 0.98 · 0.98 · 1.0 mm, ulatory requirements, and the code of ethics of the World Medical respectively. Association (Declaration of Helsinki). Subjects were recruited from Subjects underwent 90-min dynamic PET on an ECAT EXACT Connecticut and surrounding states by paper and online advertise- HR1 scanner (Siemens Medical Systems) in 3-dimensional mode. ments, as well as personal referrals. Written informed consent was Before each PET scan, a transmission scan was acquired for attenu- obtained from all participants at the beginning of screening after the ation correction. Up to 740 MBq (20 mCi) of radioactivity were study procedures had been fully explained. administered by an infusion pump for each scan (mean, 585.39 6 Radiosynthesis of 11C-GSK215083 on the FXC 128.34 MBq). The maximum mass dose from the radioligand was 6 Automated Module limited to minimize any self-occupancy (#10 mg) (mean, 3.03 11 11C-GSK215083 was radiolabeled with 11C-methyl triflate using an 2.32 mg). For each PET scan, C-GSK215083 was administered by FXC automated module (GE Healthcare) by modifying a previously bolus intravenous infusion over 60 s, immediately followed by acqui- described procedure (18).
Recommended publications
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • Substance P and Antagonists of the Neurokinin-1 Receptor In
    Martinez AN and Philipp MT, J Neurol Neuromed (2016) 1(2): 29-36 Neuromedicine www.jneurology.com www.jneurology.com Journal of Neurology & Neuromedicine Mini Review Article Open Access Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System Alejandra N. Martinez1 and Mario T. Philipp1,2* 1Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA 2Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA Article Info ABSTRACT Article Notes This review addresses the role that substance P (SP) and its preferred receptor Received: May 03, 2016 neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, Accepted: May 18, 2016 viral, parasitic, and neurodegenerative diseases of the central nervous system. *Correspondence: The SP/NK1R complex is a key player in the interaction between the immune Division of Bacteriology and Parasitology and nervous systems. A common effect of this interaction is inflammation. For Tulane National Primate Research Center this reason and because of the predominance in the human brain of the NK1R, Covington, LA, USA its antagonists are attractive potential therapeutic agents. Preventing the Email: [email protected] deleterious effects of SP through the use of NK1R antagonists has been shown © 2016 Philipp MT. This article is distributed under the terms of to be a promising therapeutic strategy, as these antagonists are selective, the Creative Commons Attribution 4.0 International License potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to Keywords clinical management of CNS inflammation.
    [Show full text]
  • Basal Ganglia Anatomy, Physiology, and Function Ns201c
    Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub.
    [Show full text]
  • Conditional Ablation of Brain-Derived Neurotrophic Factor-Trkb Signaling Impairs Striatal Neuron Development
    Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development Yun Lia,1, Daishi Yuia, Bryan W. Luikarta,2, Renée M. McKaya, Yanjiao Lia, John L. Rubensteinb, and Luis F. Paradaa,3 aDepartment of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390; and bNina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94143 Contributed by Luis F. Parada, August 2, 2012 (sent for review June 21, 2012) Neurotrophic factors, such as brain-derived neurotrophic factor cascades pertaining to development, maturation, and function of (BDNF), are associated with the physiology of the striatum and the striatum remains to be delineated. the loss of its normal functioning under pathological conditions. In this study, we conditionally ablated BDNF or its receptor The role of BDNF and its downstream signaling in regulating the TrkB in corticostriatal and nigrostriatal neuronal circuits. We development of the striatum has not been fully investigated, found that Bdnf deletion in both cortex and substantia nigra led to Bdnf complete depletion of BDNF protein in the striatum. Mutant mice however. Here we report that ablation of in both the cortex displayed dramatic developmental abnormalities and neurological and substantia nigra depletes BDNF in the striatum, and leads to impairments. Furthermore, specific deletion of TrkB from striatal fi impaired striatal development, severe motor de cits, and postnatal neurons was sufficient to produce this wide range of developmental lethality. Furthermore, striatal-specific ablation of TrkB, the gene deficits. Thus, our results demonstrate that BDNF and TrkB play encoding the high-affinity receptor for BDNF, is sufficient to elicit critical paracrine and cell-autonomous roles, respectively, in the an array of striatal developmental abnormalities, including de- development and maintenance of striatal neurons.
    [Show full text]
  • Injection of a Dopamine Type 2 Receptor Antagonist Into the Dorsal Striatum Disrupts Choices Driven by Previous Outcomes, but Not Perceptual Inference
    6298 • The Journal of Neuroscience, April 22, 2015 • 35(16):6298–6306 Behavioral/Cognitive Injection of a Dopamine Type 2 Receptor Antagonist into the Dorsal Striatum Disrupts Choices Driven by Previous Outcomes, But Not Perceptual Inference X Eunjeong Lee, Moonsang Seo, Olga Dal Monte, and Bruno B. Averbeck Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415 Decisions are often driven by a combination of immediate perception and previous experience. In this study, we investigated how these two sources of information are integrated and the neural systems that mediate this process. Specifically, we injected a dopamine type 1 antagonist (D1A; SCH23390) or a dopamine type 2 antagonist (D2A; eticlopride) into the dorsal striatum while macaques performed a task in which their choices were driven by perceptual inference and/or reinforcement of past choices. We found that the D2A affected choices based on previous outcomes. However, there were no effects of the D2A on choices driven by perceptual inference. We found that the D1A did not affect perceptual inference or reinforcement learning. Finally, a Bayesian model applied to the results suggested that the D2Amaybeincreasingnoiseinthestriatalrepresentationofvalue,perhapsbydisruptingthestriatalpopulationthatnormallyrepresents value. Key words: action value; dorsal striatum; neuromodulation; Parkinson’s disease; reinforcement learning; sequential decision making Introduction available in the current trial to drive the choice. Reinforcement Decisions are often driven by a combination of immediate per- learning or learning from past outcomes has often been attrib- ceptual evidence and previous experience. Several groups have uted to plasticity within the striatum (Graybiel, 2008; Cockburn studied perceptual decision-making tasks, in which stochastic et al., 2014).
    [Show full text]
  • A Three-Dimensional Thalamocortical Dataset for Characterizing Brain Heterogeneity: X-Ray Microct Images (Tif)
    www.nature.com/scientificdata OPEN A three-dimensional DATA DescrIPTOR thalamocortical dataset for characterizing brain heterogeneity Judy A. Prasad 1, Aishwarya H. Balwani 2, Erik C. Johnson3, Joseph D. Miano4, Vandana Sampathkumar1, Vincent De Andrade5, Kamel Fezzaa 5, Ming Du5, Rafael Vescovi 5, Chris Jacobsen 5,6, Konrad P. Kording 7, Doga Gürsoy5, William Gray Roncal3, Narayanan Kasthuri1 & Eva L. Dyer2,8 ✉ Neural microarchitecture is heterogeneous, varying both across and within brain regions. The consistent identifcation of regions of interest is one of the most critical aspects in examining neurocircuitry, as these structures serve as the vital landmarks with which to map brain pathways. Access to continuous, three-dimensional volumes that span multiple brain areas not only provides richer context for identifying such landmarks, but also enables a deeper probing of the microstructures within. Here, we describe a three-dimensional X-ray microtomography imaging dataset of a well-known and validated thalamocortical sample, encompassing a range of cortical and subcortical structures from the mouse brain . In doing so, we provide the feld with access to a micron-scale anatomical imaging dataset ideal for studying heterogeneity of neural structure. Background & Summary Whether focusing on a large swath of cortex or a single subcortical nucleus, consistent and reliable visualization of brain microarchitecture is critical for the creation of reference points which demarcate the brain’s landscape1. Tis is true not only for the identifcation of landmarks (or regions of interest), but also the study of local circuits therein. Tus, detailed views into the brain’s microarchitecture can be used to study disease, experimentally target circuits, and to advance the feld’s understanding and integration of each of these overarching neural systems.
    [Show full text]
  • Neuromodulation Shapes Interneuron Communication in the Mouse Striatum
    From DEPARTMENT OF NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden NEUROMODULATION SHAPES INTERNEURON COMMUNICATION IN THE MOUSE STRIATUM Matthijs Constantijn Dorst Stockholm 2020 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by US-AB © Matthijs Constantijn Dorst, 2020 ISBN 978-91-7831-908-4 Neuromodulation shapes interneuron communication in the mouse Striatum THESIS FOR DOCTORAL DEGREE (Ph.D.) By Matthijs Constantijn Dorst Principal Supervisor: Opponent: Professor Gilad Silberberg Professor Hagai Bergman Karolinska Institutet The Hebrew University of Jerusalem Department of Neuroscience Edmond & Lily Safra Center for Brain Sciences Co-supervisor(s): Examination Board: Professor Per Uhlén Professor Per Svenningsson Karolinska Institutet Karolinska Institutet Department of Medical Biochemistry and Department of Clinical Neuroscience Biophysics Division of Neuropharmacology - movement disorders Senior lecturer Karima Chergui Karolinska Institutet Department of Physiology and Pharmacology Division of Molecular Neurophysiology Professor Klas Kullander Uppsala Universitet Department of Neuroscience Research group Formation and Function of Neuronal Circuits Included Studies The following studies are included in this thesis, and will be referenced through- out the text as such: Study 1 Garas, F.N., Shah, R.S., Kormann, E., Doig, N.M., Vinciati, F., Nakamura, K.C., Dorst, M.C., Smith, Y., Magill, P.J. and Sharott, A., 2016. Sec- retagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. Elife, 5, p.e16088. Study 2 Lindroos, R., Dorst, M.C., Du, K., Filipović, M., Keller, D., Ketzef, M., Kozlov, A.K., Kumar, A., Lindahl, M., Nair, A.G., Pérez-Fernández, J., Grillner, S., Silberberg, G., Kotaleski, J.H., 2018. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]
  • Issues Surrounding the Cognitive Neuroscience of Obsessive-Compulsive Disorder
    Psychonomic Bulletin & Review 1998,5(2),161-172 Issues surrounding the cognitive neuroscience of obsessive-compulsive disorder KEVIN D. WILSON University ofPennsylvania, Philadelphia, Pennsylvania Obsessive-compulsive disorder (OCD) has been studied extensively in recent years, with increased emphasis on understanding OCD's biological substrates. There has been significant progress in docu­ menting abnormal brain function in OCD patients, particularly in the orbitofrontal cortex, basal gan­ glia, and thalamus. Similar progress has broadened our understanding of the cognitive and behavioral manifestations ofthe disorder, including deficits in set shifting, hyperattention, and visuospatial con­ struction abilities. Unfortunately, these results have not been replicated consistently. This report com­ prises a review of previous attempts to characterize the neurobiology and neuropsychology of OCD, and a discussion ofseveral factors in OCD research that can help to explain previous inconsistencies. Obsessive-compulsive disorder (OCD) is a relatively logical features ofOCD. Only then will an adequate the­ common form ofpsychopathology with a lifetime preva­ ory ofthe cognitive neuroscience ofOCD be possible. lence of2%-3% (Robins et al., 1984). Although the ana­ tomical and behavioral regularities of the disorder have PHENOMENOLOGY OF OeD been studied extensively over the past 20 years, there has been relatively little success in the attempt to establish OCD is grouped under the general heading ofanxiety how the former give rise to the latter. Popular models of disorders. The DSM-IV(American Psychological Asso­ OCD have drawn upon a variety ofdisciplines, including ciation, 1994) defines OCD as "recurrent obsessions or learning theory (Mowrer, 1960), cybernetics (Pitman, compulsions that are severe enough to be time consum­ 1987) and psychoanalysis (Fenichel, 1945).
    [Show full text]
  • Focused Ultrasound Enhanced Intranasal Delivery of Brain Derived
    www.nature.com/scientificreports OPEN Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative efects in a Parkinson’s disease mouse model Robin Ji 1, Morgan Smith1, Yusuke Niimi1, Maria E. Karakatsani 1, Maria F. Murillo1, Vernice Jackson-Lewis3,5,6, Serge Przedborski3,4,5,6 & Elisa E. Konofagou1,2* Focused ultrasound-enhanced intranasal (IN + FUS) delivery is a noninvasive approach that utilizes the olfactory pathway to administer pharmacological agents directly to the brain, allowing for a more homogenous distribution in targeted locations compared to IN delivery alone. However, whether such a strategy has therapeutic values, especially in neurodegenerative disorders such as Parkinson’s disease (PD), remains to be established. Herein, we evaluated whether the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine catalysis, could be enhanced by IN + FUS delivery of brain-derived neurotrophic factor (BDNF) in a toxin-based PD mouse model. Mice were put on the subacute dosing regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), producing bilateral degeneration of the nigrostriatal pathway consistent with early-stage PD. MPTP mice then received BDNF intranasally followed by multiple unilateral FUS-induced blood-brain barrier (BBB) openings in the left basal ganglia for three consecutive weeks. Subsequently, mice were survived for two months and were evaluated morphologically and behaviorally to determine the integrity of their nigrostriatal dopaminergic pathways. Mice receiving IN + FUS had signifcantly increased TH immunoreactivity in the treated hemisphere compared to the untreated hemisphere while mice receiving only FUS-induced BBB opening or no treatment at all did not show any diferences.
    [Show full text]
  • Motor Systems Basal Ganglia
    Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP).
    [Show full text]
  • Coordination of Rapid Cholinergic and Dopaminergic Signaling in Striatum During Spontaneous Movement
    RESEARCH ARTICLE Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement Mark Howe†*, Imane Ridouh, Anna Letizia Allegra Mascaro‡, Alyssa Larios, Maite Azcorra, Daniel A Dombeck* Department of Neurobiology, Northwestern University, Evanston, United States Abstract Interplay between dopaminergic and cholinergic neuromodulation in the striatum is crucial for movement control, with prominent models proposing pro-kinetic and anti-kinetic effects of dopamine and acetylcholine release, respectively. However, the natural, movement-related signals of striatum cholinergic neurons and their relationship to simultaneous variations in dopamine signaling are unknown. Here, functional optical recordings in mice were used to establish rapid cholinergic signals in dorsal striatum during spontaneous movements. Bursts across the cholinergic population occurred at transitions between movement states and were marked by *For correspondence: widespread network synchronization which diminished during sustained locomotion. Simultaneous [email protected] (MH); cholinergic and dopaminergic recordings revealed distinct but coordinated sub-second signals, [email protected] suggesting a new model where cholinergic population synchrony signals rapid changes in (DAD) movement states while dopamine signals the drive to enact or sustain those states. DOI: https://doi.org/10.7554/eLife.44903.001 Present address: †Department of Psychological and Brain Sciences, Boston University, Boston, United States; ‡European Laboratory for Non- Introduction linear Spectroscopy, Florence, Striatum cholinergic interneurons (ChIs) have long been recognized as critical for normal functioning Italy and Neuroscience Institute, of the basal ganglia in the control of movement and in learning and responding to motivational and National Research Council, Pisa, salient stimuli (Apicella et al., 1996; Apicella et al., 1997; Apicella et al., 1991; Collins et al., Italy 2016; Kimura et al., 1984; Kondabolu et al., 2016; Schulz et al., 2011; Kaneko et al., 2000).
    [Show full text]