Transcriptional Network Analysis of Transcriptomic Diversity in Resident Tissue Macrophages and Dendritic Cells in the Mouse Mononuclear Phagocyte System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Down-Regulation of Stem Cell Genes, Including Those in a 200-Kb Gene Cluster at 12P13.31, Is Associated with in Vivo Differentiation of Human Male Germ Cell Tumors
Research Article Down-Regulation of Stem Cell Genes, Including Those in a 200-kb Gene Cluster at 12p13.31, Is Associated with In vivo Differentiation of Human Male Germ Cell Tumors James E. Korkola,1 Jane Houldsworth,1,2 Rajendrakumar S.V. Chadalavada,1 Adam B. Olshen,3 Debbie Dobrzynski,2 Victor E. Reuter,4 George J. Bosl,2 and R.S.K. Chaganti1,2 1Cell Biology Program and Departments of 2Medicine, 3Epidemiology and Biostatistics, and 4Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York Abstract on the degree and type of differentiation (i.e., seminomas, which Adult male germ cell tumors (GCTs) comprise distinct groups: resemble undifferentiated primitive germ cells, and nonseminomas, seminomas and nonseminomas, which include pluripotent which show varying degrees of embryonic and extraembryonic embryonal carcinomas as well as other histologic subtypes patterns of differentiation; refs. 2, 3). Nonseminomatous GCTs are exhibiting various stages of differentiation. Almost all GCTs further subdivided into embryonal carcinomas, which show early show 12p gain, but the target genes have not been clearly zygotic or embryonal-like differentiation, yolk sac tumors and defined. To identify 12p target genes, we examined Affymetrix choriocarcinomas, which exhibit extraembryonal forms of differ- (Santa Clara, CA) U133A+B microarray (f83% coverage of 12p entiation, and teratomas, which show somatic differentiation along genes) expression profiles of 17 seminomas, 84 nonseminoma multiple lineages (3). Both seminomas and embryonal carcinoma GCTs, and 5 normal testis samples. Seventy-three genes on 12p are known to express stem cell markers, such as POU5F1 (4) and were significantly overexpressed, including GLUT3 and REA NANOG (5). -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Derivation of Stable Microarray Cancer-Differentiating Signatures Using Consensus Scoring of Multiple Random Sampling and Gene-Ranking Consistency Evaluation
Research Article Derivation of Stable Microarray Cancer-Differentiating Signatures Using Consensus Scoring of Multiple Random Sampling and Gene-Ranking Consistency Evaluation Zhi Qun Tang,1,2 Lian Yi Han,1,2 Hong Huang Lin,1,2 Juan Cui,1,2 Jia Jia,1,2 Boon Chuan Low,2,3 Bao Wen Li,2,4 and Yu Zong Chen1,2 1Bioinformatics and Drug Design Group, Department of Pharmacy; 2Center for Computational Science and Engineering; and Departments of 3Biological Sciences and 4Physics, National University of Singapore, Singapore, Singapore Abstract sampling methods. Only 1 to 5 of the 4 to 60 selected predictor Microarrays have been explored for deriving molecular genes in each of these sets are present in more than half of the signatures to determine disease outcomes, mechanisms, other nine sets (Table 1), and 2 to 20 of the predictor genes in each targets, and treatment strategies. Although exhibiting good set are cancer related (Table 2). Despite the use of sophisticated predictive performance, some derived signatures are unstable class differentiation and signature selection methods, the selected due to noises arising from measurement variability and signatures show few overlapping predictor genes, as in the case of biological differences. Improvements in measurement, anno- other microarray data sets including non–Hodgkin lymphoma, tation, and signature selection methods have been proposed. acute lymphocytic leukemia, breast cancer, lung adenocarcinoma, We explored a new signature selection method that incorpo- medulloblastoma, hepatocellular carcinoma, and acute myeloid rates consensus scoring of multiple random sampling and leukemia (9, 15). multistep evaluation of gene-ranking consistency for maxi- Although these signatures display high cancer differentiation mally avoiding erroneous elimination of predictor genes. -
Characterization of a Novel Mouse Model with Genetic Deletion of CD177
Protein Cell 2015, 6(2):117–126 DOI 10.1007/s13238-014-0109-1 Protein & Cell RESEARCH ARTICLE Characterization of a novel mouse model with genetic deletion of CD177 Qing Xie1,2, Julia Klesney-Tait3, Kathy Keck3, Corey Parlet2, Nicholas Borcherding2, Ryan Kolb2, Wei Li2, & Lorraine Tygrett2, Thomas Waldschmidt2, Alicia Olivier2, Songhai Chen4, Guang-Hui Liu5,6, Xiangrui Li1 , Weizhou Zhang2& 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China 2 Department of Pathology, Holden Comprehensive Cancer Center, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA 3 Department of Internal Medicine, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA 4 Department of Pharmacology, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA Cell 5 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China & 6 Beijing Institute for Brain Disorders, Beijing 100069, China & Correspondence: [email protected] (X. Li), [email protected] (W. Zhang) Received September 1, 2014 Accepted September 25, 2014 Protein ABSTRACT neutrophil counts in inflammatory skin caused by S. aureus. Mechanistically we found that CD177 deletion in Neutrophils play an essential role in the innate immune mouse neutrophils has no significant impact in CXCL1/ response to infection. Neutrophils migrate from the KC- or fMLP-induced migration, but led to significant cell vasculature into the tissue in response to infection. death. Herein we established a novel genetic mouse Recently, a neutrophil cell surface receptor, CD177, was model to study the role of CD177 and found that CD177 shown to help mediate neutrophil migration across the plays an important role in neutrophils. -
Dendritic Cell Subsets in Intestinal Immunity and Inflammation Tian Sun, Albert Nguyen and Jennifer L
Dendritic Cell Subsets in Intestinal Immunity and Inflammation Tian Sun, Albert Nguyen and Jennifer L. Gommerman This information is current as J Immunol 2020; 204:1075-1083; ; of September 28, 2021. doi: 10.4049/jimmunol.1900710 http://www.jimmunol.org/content/204/5/1075 Downloaded from References This article cites 152 articles, 56 of which you can access for free at: http://www.jimmunol.org/content/204/5/1075.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Dendritic Cell Subsets in Intestinal Immunity and Inflammation Tian Sun, Albert Nguyen, and Jennifer L. Gommerman The mammalian intestine is a complex environment shaping the ensuing immune response. In this Brief Review,we that is constantly exposed to Ags derived from food, review the different types of classical DC (cDC) located in the microbiota, and metabolites. -
Single Cell Transcriptome Atlas of Immune Cells in Human Small
bioRxiv preprint doi: https://doi.org/10.1101/721258; this version posted August 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Single cell transcriptome atlas of immune cells in human small 2 intestine and in celiac disease 3 4 Nader Atlasy1,a,4, Anna Bujko2,4, Peter B Brazda1,a, Eva Janssen-Megens1,a , Espen S. 5 Bækkevold2, Jørgen Jahnsen3, Frode L. Jahnsen2, Hendrik G. Stunnenberg1,a,* 6 7 8 1Department of Molecular Biology, Science Faculty, Radboud University, Nijmegen, The 9 Netherlands. 10 2 Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, 11 Oslo, Norway 12 3 Department of Gastroenterology, Akershus University Hospital and University of Oslo, 13 Oslo, Norway. 14 15 acurrent address: Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 16 CS Utrecht 17 18 19 4These authors contributed equally to this study 20 21 22 *Corresponding author: [email protected] 23 24 25 26 Celiac disease (CeD) is an autoimmune disorder in which ingestion of dietary gluten 27 triggers an immune reaction in the small intestine1,2. The CeD lesion is characterized by 28 crypt hyperplasia, villous atrophy and chronic inflammation with accumulation of 29 leukocytes both in the lamina propria (LP) and in the epithelium3, which eventually 30 leads to destruction of the intestinal epithelium1 and subsequent digestive complications 31 and higher risk of non-hodgkin lymphoma4. A lifetime gluten-free diet is currently the 32 only available treatment5. Gluten-specific LP CD4 T cells and cytotoxic intraepithelial 33 CD8+ T cells are thought to be central in disease pathology1,6-8, however, CeD is a 34 complex immune-mediated disorder and to date the findings are mostly based on 35 analysis of heterogeneous cell populations and on animal models. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Feedback Regulation Between Initiation and Maturation Networks Orchestrates the Chromatin Dynamics of Epidermal Lineage
bioRxiv preprint doi: https://doi.org/10.1101/349308; this version posted June 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Li et al., p. 1 Feedback Regulation between Initiation and Maturation Networks Orchestrates the Chromatin Dynamics of Epidermal Lineage Commitment Lingjie Li1,3,4, Yong Wang2,4,7,8*, Jessica L. Torkelson1,3*, Gautam Shankar1, Jillian M. Pattison1,3, Hanson H. Zhen1,3, Zhana Duren2,4,7, Fengqin Fang5, Sandra P. Melo1, Samantha N. Piekos1,3, Jiang Li1, Eric J. Liaw1, Lang Chen7, Rui Li1,4, Marius Wernig6, Wing H. Wong2,4, Howard Y. Chang1,4, Anthony E. Oro1,3,9 1 Program in Epithelial Biology and Department of Dermatology 2 Department of Statistics and Biomedical Data Science 3 Center for Definitive and Curative Medicine 4 Center for Personal Dynamic Regulome 5 Division of Immunology and Rheumatology, Department of Medicine, 6 Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA. 7 CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing,100080, China 8 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China *These authors made equal and independent contributions. 9 Correspondence to Lead Contact: Anthony E. Oro at [email protected] bioRxiv preprint doi: https://doi.org/10.1101/349308; this version posted June 18, 2018. -
Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Dendritic Cell Progenitor Trafficking and Identification and Functional Analyses of Dendritic Cells with Distinct Developmental Origin
Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München Dendritic cell progenitor trafficking and identification and functional analyses of dendritic cells with distinct developmental origin vorgelegt von: Johanna Marie Salvermoser aus: Pfaffenhofen an der Ilm Jahr: 2020 _____________________ First supervisor: Prof. Dr. Barbara Schraml Second supervisor: Prof. Dr. Anne Krug Third supervisor: Prof. Dr. Christian Schulz Fourth supervisor: PD. Dr. rer. nat. Caspar Ohnmacht Dean: Prof. Dr. med. dent. Reinhard Hickel Datum der Verteidigung: 09.03.2020 2 Abstract ABSTRACT Conventional dendritic cells (cDCs), are the major antigen-presenting cell type that bridges the innate and adaptive immune system. DCs are constantly replenished from myeloid bone marrow progenitors which latest stage, pre-cDC, leave the BM, seeds the peripheral tissues and further differentiates into two functionally and developmentally distinct subsets, cDC1 and cDC2. This study aimed to investigate DC development by assessing the trafficking of pre-cDCs and by analyzing the effect of a specific depletion of DC progenitors. The signals that regulate the recruitment of pre-cDCs to different peripheral organs are poorly understood. Therefore, this study aimed to identify pre-cDCs in different peripheral organs and to find differences in expression pattern of trafficking receptors. In this study 39 trafficking receptors have been identified to be expressed on pre-cDCs of the analysed tissues and showed differences in the expression patterns between peripheral organs. These receptors are interesting candidates to further study differences in the recruitment of pre-cDCs to different peripheral tissues This can provide possibilities to influence the recruitment of pre-cDCs in certain diseases, where the replenishment of cDCs is accelerated. -
The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. -
High-Density Single Nucleotide Polymorphism Array Defines Novel Stage and Location-Dependent Allelic Imbalances in Human Bladder Tumors
ResearchResearch Article Article High-Density Single Nucleotide Polymorphism Array Defines Novel Stage and Location-Dependent Allelic Imbalances in Human Bladder Tumors Karen Koed,1,3 Carsten Wiuf,4 Lise-Lotte Christensen,1 Friedrik P. Wikman,1 Karsten Zieger,1,2 Klaus Møller,2 Hans von der Maase,3 and Torben F. Ørntoft1 Molecular Diagnostic Laboratory, 1Departments of Clinical Biochemistry, 2Urology, and 3Oncology, Aarhus University Hospital; and 4Bioinformatics Research Center, Aarhus University, Aarhus, Denmark Abstract In the case of noninvasive Ta transitional cell carcinomas, this Bladder cancer is a common disease characterized by multiple includes loss of chromosome 9, or parts of it, as well as 1q+ and loss recurrences and an invasive disease course in more than 10% of the Y chromosome in males (2, 5). In invasive tumors, many of patients. It is of monoclonal or oligoclonal origin and alterations have been reported to be more or less common: 1pÀ, genomic instability has been shown at certain loci. We used a 2qÀ,4qÀ,5qÀ,8pÀ, À9, 10qÀ, 11pÀ,11qÀ, 1q+, 2p+, 5p+, 8q+, 10,000 single nucleotide polymorphism (SNP) array with an 11q13+, 17q+, and 20q+ (2, 6–8). It has been suggested that these lost average of 2,700 heterozygous SNPs to detect allelic imbalances or gained regions harbor tumor suppressor genes and oncogenes, (AI) in 37 microdissected bladder tumors from 17 patients. respectively. However, the large chromosomal areas involved often Eight tumors represented upstaging from Ta to T1, eight from contain many genes, making meaningful predictions of the T1 to T2+, and one from Ta to T2+.