Neoarchaean Clastic Rocks of the Kaapvaal Craton –

Total Page:16

File Type:pdf, Size:1020Kb

Neoarchaean Clastic Rocks of the Kaapvaal Craton – Neoarchaean Clastic Rocks of the Kaapvaal Craton – Provenance Analyses and Geotectonic Implications Eva Anita Schneiderhan Neoarchaean Clastic Rocks on the Kaapvaal Craton – Provenance Analyses and Geotectonic Implications by Eva Anita Schneiderhan THESIS presented in fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR in GEOLOGY in the FACULTY OF SCIENCE of the UNIVERSITY OF JOHANNESBURG Supervisor Dr. U. Zimmermann Co-Supervisor Prof. J. Gutzmer May 2007 Declaration I declare that this thesis is my own original work, conducted under the supervision of Dr. Udo Zimmermann and Prof. Jens Gutzmer. It is submitted for the degree Doctor of Philosophy at the Faculty of Science at the University of Johannesburg. No part of this research has been submitted in the past, or is being submitted, for a degree or examination at any other university. E. A. Schneiderhan I Acknowledgements There are a number of people whom I would like to thank, because without them I would not have been able to succeed with this thesis. I appreciate your time and your support that you expressed in various ways, especially during the difficult last months. First of all, I am thankful to my supervisor Dr. Udo Zimmermann and co-supervisor Prof. Jens Gutzmer for providing me with the topic of this thesis. I am grateful for their support, constructive criticism and discussions, as well as for the bursary and research funding granted. I am indebted to the German Academic Exchange Service (DAAD) for providing a generous scholarship under grant number D/02/28359 for the first two years. Avgold Ltd., Mr. Rod Tucker and Mr. Dries Ferreira are thanked for giving access to their exploration drill core and their hospitality in Allanridge. Furthermore, Dr. Herman Dorland is thanked for helping me with the sample collection in the field. In this respect, I would also like to thank Mr. Bill Wheater who gave us access to his Farm Kransberg, from where some of the studied samples originate. Regarding the logistics and sample analyses, the support by the staff of the Department of Geology, University of Johannesburg, and SPECTRAU is thankfully appreciated. I greatly appreciate the support by Dr. Richard Armstrong, Australian National University, Canberra, who performed SHRIMP II analyses on a large number of zircons. Furthermore, I gratefully acknowledge that Prof. Klaus Mezger granted me access to the facilities of the Zentrallaboratorium für Geochronologie of the Westfälische Wilhelms Universität Münster, Germany, to carry out analyses on Sm-Nd and Rb-Sr isotopic systems. Also Miss Heidi Baier and Prof. Erik Scherer are thanked for their support in acquiring a lot of numbers and processing them into useful data. I appreciate their great hospitality during my research visit, as well as fruitful discussion of the data later on. II Also Prof. Harald Strauss and Mr. Artur Fugman from the Stabile Isotopen Labor of the Geologisch-Paläontologisches Institut of the Westfälische Wilhelms Universität Münster are thanked for taking care of the analyses of stable isotopes of carbonates and organic carbon of selected samples. I appreciate the support of all those who helped me get going in my first weeks in South Africa. Thanks to André. You made me a much stronger person, taught me how to catch life’s curveballs, and proved a lot of patience. Jy is my beste maatjie! Lastly, I am eternally indebted to my parents for their unconditional support during the last years. I appreciate that they let me go - which brought me closer to them again. This thesis is dedicated to my mother, and especially to my father who won’t see the result of my studies anymore. I know that he would have seriously tried to read this thesis entirely, and I appreciate it. III Abstract The provenance of the Neoarchaean Ventersdorp Supergroup and several age-related supracrustal successions was analysed to gain insight into the geotectonic evolution of the Kaapvaal Craton during the transition from the Archaean to Proterozoic Eras. The studied successions include, besides the siliciclastic formations of the Ventersdorp Supergroup, the upper Wolkberg and Buffelsfontein Groups, the Godwan Formation and the Schmidtsdrift Subgroup of the basal Transvaal Supergroup in Griqualand West. Petrographic, whole rock geochemical and Sm-Nd isotopic analyses were combined with SHRIMP U-Pb age dating of detrital zircons. Furthermore, Rb-Sr isotopic studies were carried out on carefully selected suites of samples from surface exposure or, wherever possible, on deep diamond drill core. The Ventersdorp Supergroup is an up to 5 km thick undeformed, only slightly metamorphosed volcano-sedimentary succession deposited on the Kaapvaal Craton between 2714 Ma and 2665 Ma. A lack of major time hiati to the underlying Mesoarchaean Witwatersrand Supergroup and covering Neoarchaean to Palaeoproterozoic Transvaal Supergroup render the Ventersdorp Supergroup very well suited for the investigation of the geotectonic evolution of the Kaapvaal Craton near the Archaean-Proterozoic boundary. This is supported by its excellent preservation, which also allowed detailed studies of sedimentological structures, such as seismites indicating Neoarchaean earthquakes. The provenance analyses carried out on the clastic formations of the Ventersdorp Supergroup point to a gradual change in tectonic evolution from typically Archaean to post-Archaean processes rather than a drastic, unique transition in the case of the Kaapvaal Craton. Texturally immature wackes of the Kameeldoorns Formation, representing the oldest clastic units of the Ventersdorp Supergroup, are derived mainly from Mesoarchaean source rocks, whereas the stratigraphically younger Bothaville Formation displays geochemical signatures comparable with Archaean trondhjemite-tonalite granodiorite-suites (TTGs), thus suggesting crustal addition in the so-called ‘Archaean-style’. The extension of provenance analyses to supracrustal successions that are tentatively correlated with the Bothaville Formation, revealed contributions from granitoid IV sources that formed under post-Archaean and Archaean conditions. Furthermore, the geochemical data for all analysed formations support a passive margin setting. Arc settings, as indicated in some samples, are due to the input of less fractionated volcanic material that provides evidence of distal volcanism. Analyses of Nd-isotopic systematics and U-Pb ages of detrital zircons revealed a Mesoarchaean age for the source rocks of the formations. U-Pb age dating of detrital zircons of the Godwan Formation suggests that this formation is of Mesoarchaean age, and therefore not a correlative of the other Neoarchaean successions. Hence, the results suggest that the continental crust of the Kaapvaal Craton was thick enough since the Mesoarchaean (2.8 - 3.1 Ga) to allow long-term crustal recycling, and therefore modern plate tectonic processes could have operated earlier than on other well-studied cratonic blocks. During the Neoarchaean, however, crustal thickening of the Kaapvaal Craton took place by accretion of Archaean-style TTGs along the margins of the craton. Thus, Archaean and post-Archaean tectono-magmatic processes co-existed. Furthermore, the Neoarchaean supracrustal successions represent the first sedimentation events on an entirely stabilised and tectonically quiescent Kaapvaal Craton. Input from distal volcanic sources marks the last sign of volcanic activity prior to the craton-wide deposition of carbonate rocks of the Transvaal Supergroup. Geochronological data also imply a connection of the Neoarchaean Kaapvaal Craton to further cratonic blocks that may hold source rocks for the studied formations, as for some small age populations of older detrital zircons (ca. 3.1 - 3.4 Ga), no suitable source area could be identified on the Kaapvaal Craton itself. However, it seems unlikely that the Zimbabwe Craton was one of these cratonic blocks, because the Rb-Sr whole rock ages of all studied formations yield a model age of 2092 ± 55 Ma, which is thought to correspond to a craton-wide influence of the 2.05 Ga old Bushveld Igneous Complex on the Rb-Sr isotope systematics of all analysed clastic successions. This influence is apparently missing in the Southern and Central Marginal Zones of the Limpopo Belt, suggesting that the collision between the Kaapvaal and Zimbabwe Cratons only took place after the emplacement of the Bushveld Igneous Complex, i.e. after 2.05 Ga. V Table of Contents Table of Contents DECLARATION I ACKNOWLEDGEMENTS II ABSTRACT IV 1 INTRODUCTION 1 1.1 Objective 5 1.2 Analytical Methodology 6 1.3 Plate-tectonic Models and crustal Growth 7 1.3.1 Geotectonic models 8 1.3.1.1 Vertical geotectonic (plume) model 9 1.3.1.2 Horizontal geotectonic (arc) model 10 1.3.1.3 Supercontinents and Vaalbara 10 1.3.2 Archaean and post-Archaean crustal growth models 12 1.3.2.1 Archaean crustal growth 12 1.3.2.1.1 Greenstone Belts 13 1.3.2.1.2 Trondhjemite-Tonalite Granodiorites (TTG) 14 1.3.2.2 Post-Archaean crustal growth 15 1.3.2.3 Geochemical characteristics 15 1.3.3 Summary 16 1.4 References 17 2 GEOLOGICAL SETTING 29 2.1 Previous Work 38 2.2 Ventersdorp Supergroup 41 2.2.1 Lithostratigraphy 41 2.2.2 Palaeoenvironmental Significance 46 2.3 Transvaal proto-basinal Successions 47 2.3.1 Godwan Formation 47 2.3.1.1 Lithostratigraphy 47 2.3.1.2 Palaeoenvironmental significance 48 2.3.2 Wolkberg Group 49 2.3.2.1 Lithostratigraphy 49 2.3.2.2 Palaeoenvironmental Significance 50 2.3.3 Buffelsfontein Group 51 2.3.3.1 Lithostratigraphy 51 2.3.3.2 Palaeoenvironmental
Recommended publications
  • Meso-Archaean and Palaeo-Proterozoic Sedimentary Sequence Stratigraphy of the Kaapvaal Craton
    Marine and Petroleum Geology 33 (2012) 92e116 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Meso-Archaean and Palaeo-Proterozoic sedimentary sequence stratigraphy of the Kaapvaal Craton Adam J. Bumby a,*, Patrick G. Eriksson a, Octavian Catuneanu b, David R. Nelson c, Martin J. Rigby a,1 a Department of Geology, University of Pretoria, Pretoria 0002, South Africa b Department of Earth and Atmospheric Sciences, University of Alberta, Canada c SIMS Laboratory, School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, NSW 2753, Australia article info abstract Article history: The Kaapvaal Craton hosts a number of Precambrian sedimentary successions which were deposited Received 31 August 2010 between 3105 Ma (Dominion Group) and 1700 Ma (Waterberg Group) Although younger Precambrian Received in revised form sedimentary sequences outcrop within southern Africa, they are restricted either to the margins of the 27 September 2011 Kaapvaal Craton, or are underlain by orogenic belts off the edge of the craton. The basins considered in Accepted 30 September 2011 this work are those which host the Witwatersrand and Pongola, Ventersdorp, Transvaal and Waterberg Available online 8 October 2011 strata. Many of these basins can be considered to have formed as a response to reactivation along lineaments, which had initially formed by accretion processes during the amalgamation of the craton Keywords: Kaapvaal during the Mid-Archaean. Faulting along these lineaments controlled sedimentation either directly by Witwatersrand controlling the basin margins, or indirectly by controlling the sediment source areas. Other basins are Ventersdorp likely to be more controlled by thermal affects associated with mantle plumes.
    [Show full text]
  • The Geology of the Olifants River Area, Transvaal
    REPUBLIC OF SOUTH AFRICA REPUBLIEK VANSUID-AFRIKA· DEPARTMENT OF MINES DEPARTEMENT VAN MYNWESE GEOLOGICAL SURVEY GEOLOGIESE OPNAME THE GEOLOGY OF THE OLIFANTS RIVER AREA, TRANSVAAL AN EXPLANATION OF SHEETS 2429B (CHUNIESPOORT) AND 2430A (WOLKBERG) by J. S. I. Sehwellnus, D.Se., L. N. J. Engelbrecht, B.Sc., F. J. Coertze, B.Sc. (Hons.), H. D. Russell, B.Sc., S. J. Malherbe, B.Sc. (Hons.), D. P. van Rooyen, B.Sc., and R. Cooke, B.Sc. Met 'n opsomming in Afrikaans onder die opskrif: DIE GEOLOGIE VAN DIE GEBIED OLIFANTSRIVIER, TRANSVAAL COPYRIGHT RESERVED/KOPIEREG VOORBEHOU (1962) Printed by and obtainable (rom Gedruk deur en verkrygbaar the Government Printer, B(ls~ van die Staatsdrukker, Bosman­ man Street, Pretoria. straat, Pretoria. Geological map in colour on a Geologiese kaart in kleur op 'n scale of I: 125,000 obtainable skaal van I: 125.000 apart ver­ separately at the price of 60c. krygbaar teen die prys van 60c. & .r.::-~ h'd'~, '!!~l p,'-' r\ f: ~ . ~) t,~ i"'-, i CONTENTS PAGE ABSTRACT ........................ ' ••• no ..........' ........" ... • • • • • • • • •• 1 I. INTRODUCTION........ •.••••••••.••••••••.....••...•.•..••••..• 3 II. PHYSIOGRAPHY................................................ 4 A. ToPOGRAPHY..... • • . • • . • . • • . • • • . • • . • . • • • • • . • • • • • . • • • • • • ... 4 B. DRAINAGE.................................................... 6 C. CLIMATE ..........•.••••.•••••.••....................... ,.... 7 D. VEGETATION .••••.•••••.•.........•..... , ..............•... , . 7 III. GEOLOGICAL FORMATIONS ....................
    [Show full text]
  • Sequence Stratigraphic Development of the Neoarchean Transvaal Carbonate Platform, Kaapvaal Craton, South Africa Dawn Y
    DAWN Y. SUMNER AND NICOLAS J. BEUKES 11 Sequence Stratigraphic Development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa Dawn Y. Sumner Department of Geology, University of California 1 Shields Ave, Davis, CA 95616 USA e-mail: [email protected] Nicolas J. Beukes Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2000 South Africa e-mail: [email protected] © 2006 March Geological Society of South Africa ABSTRACT The ~2.67 to ~2.46 Ga lower Transvaal Supergroup, South Africa, consists of a mixed siliciclastic-carbonate ramp that grades upward into an extensive carbonate platform, overlain by deep subtidal banded iron-formation. It is composed of 14 third-order sequences that develop from a mixed siliciclastic-carbonate ramp to a steepened margin followed by a rimmed margin that separated lagoonal environments from the open ocean. Drowning of the platform coincided with deposition of banded iron-formation across the Kaapvaal Craton. The geometry and stacking of these sequences are consistent with more recent patterns of carbonate accumulation, demonstrating that Neoarchean carbonate accumulation responded to subsidence, sea level change, and carbonate production similarly to Proterozoic and Phanerozoic platforms. The similarity of carbonate platform geometry through time, even with significant changes in dominant biota, demonstrates that rimmed margins are localized primarily by physiochemical conditions rather than growth dynamics of specific organisms. Stratigraphic patterns during deposition of the Schmidtsdrift and Campbellrand-Malmani subgroups are most consistent with variable thinning of the Kaapvaal Craton during extrusion of the ~2.7 Ga Ventersdorp lavas. Although depositional patterns are consistent with rifting of the western margin of the Kaapvaal Craton during this time, a rift-to-drift transition is not required to explain subsidence.
    [Show full text]
  • Article ISSN 1179-3163 (Online Edition)
    Phytotaxa 408 (1): 069–076 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.408.1.5 Gymnosporia sekhukhuniensis (Celastraceae), a new species from South Africa MARIE JORDAAN1,2 & ABRAHAM E. VAN WYK1,2* 1National Herbarium, South African National Biodiversity Institute, Private Bag X101, Pretoria, 0001 South Africa. 2H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002 South Africa. *Author for correspondence. E-mail: [email protected] Abstract Gymnosporia sekhukhuniensis, a new species from north-eastern South Africa, is described, illustrated, mapped, and compared with closely related species. It belongs to Gymnosporia sect. Buxifoliae, more specifically Group 1, the members of which are characterized by the capsules being (2)3(4)-valved, rugose or verrucose, and the seeds partially covered by the aril. The new species has a restricted distribution range and is near-endemic to the Sekhukhuneland Centre of Endemism. This biogeographical region rich in restricted-range plants is more or less congruent with surface outcrops of mafic and ultramafic igneous rocks belonging to the Rustenburg Layered Suite of the eastern Bushveld Complex. The range of the new species shows marginal intrusion into the far northern part of the nearby Wolkberg Centre of Endemism, where it is associated with dolomites of the Malmani Subgroup. Gymnosporia sekhukhuniensis is a suffrutex mainly associated with rocky outcrops in open savannah. Diagnostic characters include its dwarf habit (up to 1.6 m tall), capsules that are relatively small (5–8 mm long), woody, scaly-rugose, with hard pointed apices, and leaves that are very laxly arranged on the stems, with some often present on the thorns.
    [Show full text]
  • A New Species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 72 (2006) 551–554 www.elsevier.com/locate/sajb A new species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D. McMurtry a, , T.J. Edwards b, B. Bytebier c a Whyte Thorne, P O Box 218, Carino 1204, South Africa b School of Biological and Conservation Sciences, University of KwaZulu–Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c Biochemistry Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa Received 10 November 2005; accepted 8 March 2006 Abstract A new species, Disa vigilans D. McMurtry and T.J. Edwards, is described from the Mpumalanga Escarpment. The species is a member of the Disa Section Stenocarpa Lindl. Its alliances are discussed in terms of its morphology and its phylogenetic placement is elucidated using molecular data. D. vigilans has previously been considered as an anomalous form of Disa montana Sond. but is more closely allied to Disa amoena H.P. Linder. © 2006 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Disa; Draensberg endemic; New species; Orchidaceae; Section Stenocarpae; South Africa; Mpumalanga province 1. Introduction with 3 main veins, margins thickened and translucent. Inflorescence lax, cylindrical, 40–75 mm long; bracts light green suffused pinkish Disa is the largest genus of Orchidaceae in southern Africa (162 with darker green veins, linear-lanceolate, acuminate, 11–29×2– spp.) and has been the focus of considerable taxonomic investigation 3 mm, scarious at anthesis. Flowers white suffused with carmine- (Linder, 1981a,b, 1986; Linder and Kurzweil, 1994).
    [Show full text]
  • Open Resource
    PROTECTION AND STRATEGIC USES OF GROUNDWATER RESOURCES IN DROUGHT PRONE AREAS OF THE SADC REGION GROUNDWATER SITUATION ANALYSIS OF THE LIMPOPO RIVER BASIN FINAL REPORT This report is the final report on the project Protection and Strategic Uses of Groundwater Resources in the Transboundary Limpopo Basin and Drought Prone Areas of the SADC Region Title of Consulting Services: Groundwater Situation Analysis in the Limpopo River Basin The project was funded through a grant from The Global Environmental Facility (GEF Grant GEF-PDF TF027934 ) At the request of the World Bank a summary of the final report was prepared as a separate document by the Division of Water Environment and Forestry Technology CSIR, Pretoria, South Africa and issued as Report No. ENV-P-C-2003-047 DIVISION OF WATER, ENVIRONMENT AND FORESTRY TECHNOLOGY CSIR FINAL REPORT PROTECTION AND STRATEGIC USES OF GROUNDWATER RESOURCES IN DROUGHT PRONE AREAS OF THE SADC REGION GROUNDWATER SITUATION ANALYSIS OF THE LIMPOPO RIVER BASIN Prepared for: Southern African Development Community (SADC) Directorate for Infrastructure and Services Water Division Private Bag 0095 GABERONE Botswanao Prepared by: Environmentek, CSIR P.O. Box 395 0001 Pretoria South Africa Pretoria Project no: JQ390 October 2003 Report no: ENV-P-C 2003-026 Limpopo River Basin Groundwater Situation Analysis – Final Report CONTENTS 1. BACKGROUND TO AND PURPOSE OF THE STUDY.............................................. 1 2. OBJECTIVES AND SCOPE OF THE PROJECT........................................................ 3
    [Show full text]
  • Mus Neavei – Thomas’S Pygmy Mouse
    Mus neavei – Thomas’s Pygmy Mouse Assessment Rationale This species is listed as Data Deficient in view of continuing uncertainty as to its extent of occurrence, natural history, threats and population size. Within the assessment region there are only a handful of records Photograph from Mkhuze Game Reserve and Wolkberg Nature Reserve. The species appears to be naturally uncommon, wanted and its conservation status and taxonomy are unclear. Further vetting of museum records and field surveys are required to resolve the uncertainty around this species. It should be reassessed when additional data become available. Regional population effects: Isolated and disjunct subpopulations of this species have been recorded in Regional Red List status (2016) Data Deficient* South Africa and Zimbabwe/Zambia, thus no rescue effect is possible. National Red List status (2004) Data Deficient Reasons for change No change Distribution Global Red List status (2008) Data Deficient Thomas’s Pygmy Mouse has a largely unresolved TOPS listing (NEMBA) (2007) None distribution, as it is commonly misidentified as M. minutoides, but is thought to range patchily from CITES listing None northern South Africa northwards to Tanzania (Monadjem Endemic No et al. 2015). Although, further investigation and confirmation is necessary, this species has been reported *Watch-list Data from north-eastern South Africa, southern Zimbabwe, Although its distribution may be more widespread, western and southern Mozambique, Zambia, southern Thomas’s Pygmy Mouse is only known from two Tanzania and the Democratic Republic of Congo (Skinner disjunct localities in South Africa: Wolkberg & Chimimba 2005). Wilderness Area (Limpopo Province) and Mkhuze Within the assessment region, it is only known from two Game Reserve (KwaZulu-Natal).
    [Show full text]
  • Simplified Geological Map of the Republic of South
    16° 18° 20° 22° 24° 26° 28° 30° 32° D O I SEDIMENTARY AND VOLCANIC ROCKS INTRUSIVE ROCKS N A R a O R E E E P M . Z I M B A B W E u C Sand, gravel, I SANDVELD (%s); Q %-s O 1.8 alluvium, colluvium, Z BREDASDORP (%b); y calcrete, silcrete Text r %k O KALAHARI a ALGOA (%a); i N t r E MAPUTALAND (%m) e C T SIMPLIFIED GEOLOGICAL MAP 65 . t UITENHAGE (J-Ku); ZULULAND (Kz); SUTHERLAND (Ksu); e r C Malvernia (Kml); Mzamba, Mboyti & Mngazana (K1) KOEGEL FONTEIN (Kk) 22° 145 *-J c 22° C i I s KAROO DOLERITE KOMATIPOORT DRAKENSBERG (Jdr); LEBOMBO (Jl); (J-d); (Jk); O s OF Z a Tshokwane Granophyre SUURBERG (Js); BUMBENI (Jb) (Jts) r P-* O u Musina S J Z2 E 200 Molteno, Elliot, Clarens, Ntabeni, Nyoka *-J c M i Z2 Kml s Zme Z4 V4 Jl s C T I a *-J i R V4 O r O Tarkastad *t THE REPUBLIC OF SOUTH AFRICA O T Z P-* O F O Zme P-* 250 R Z2 U R A V4 A E !-d K P-* E n Adelaide Pa N a B i A !s Kml m H r !s P e AND ECCA Pe *-J P Z2 P-* *-J Jl C 300 *-J I DWYKA C-Pd s O P-* !-d u Z !s o !s r O !bl e R4 Zgh f E i THE KINGDOMS OF LESOTHO AND SWAZILAND n A Msikaba Dm WITTEBERG D-Cw o L Louis Trichardt V4 !4 b A r E P Zba a & ti P V4 C Zba V-sy Vsc A BOKKEVELD Db Jl - Z2 C n R4 !w a i Zba r Z1 Zgi M b NATAL On TABLE MOUNTAIN O-Dt Vkd m a !-d C CAPE GRANITE (N-"c); 2008 KLIPHEUWEL "k !4 Vr 545 NAMA (N-"n); KUBOOS-BREMEN (N-"k); P-* *-J Zgh &ti VANRHYNSDORP (N-"v); Yzerfontein Gabbro-monzonite ("y) Zgh Vle O CANGO CAVES, C-Pd Vro R4 KANSA (N-"ck) MALMESBURY (Nm); N KAAIMANS (Nk); GAMTOOS (Nga) Zp Zp Zgh A Ellisras I R4 B I !w Zg Z M GARIEP Ng 1:2 000 000 &6 A N Vle
    [Show full text]
  • First Published in Bradleya 34: 217-224. 2016
    Bradleya 34/2016 pages 217-224 Kalanchoe winteri Gideon F.Sm., N.R.Crouch & Mich.Walters (Crassulaceae), a new species from the Wolkberg Centre of Endemism, South Africa Neil R. Crouch 1,2 , Gideon F. Smith 3,4 , Michele Walters 5,6 & Estrela Figueiredo 3,4 1. Biodiversity Research, Assessment and Monitoring, South African National Biodiversity Institute, P.O. Box 52099, Berea Road, 4007 South Africa (email: [email protected]). 2. School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa. 3. Department of Botany, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 South Africa (email: [email protected]; [email protected]). 4. Centre for Functional Ecology, Departamento de Ciências da Vida, Universidade de Coimbra, 3001-455 Coimbra, Portugal. 5. Natural Resources and Environment, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001 South Africa (email: [email protected]). 6. Centre for Wildlife Management, University of Pretoria, Pretoria 0002, South Africa. Summary : A new Kalanchoe species, K. winteri (Eggli et al ., 1995; Descoings, 2003). Most re - Gideon F.Sm., N.R.Crouch & Mich.Walters, is de - cently, Thiede & Eggli (2007) treated Bryophyl - scribed from rocky grasslands of the Wolkberg re - lum as a section of Kalanchoe . Chernetskyy gion of Limpopo province, South Africa. The (2012) argued that the existence of “intermedi - species is closely allied to both K. thyrsiflora ate” species makes it impossible to distinguish Harv. and K. luciae Raym.-Hamet, from which it separate genera, a notion earlier supported by is readily separable on vegetative and reproduc - Mort et al .
    [Show full text]
  • Praying with Mandela
    Faith& and Courage Praying with Mandela Thabo Makgoba Archbishop of Cape Town Library of Congress Cataloging-in-Publication Control Number : 2019018171 The scripture quotations contained herein are from The New Revised Standard Version Bible, copyright © 1989 by the Division of Christian Education of the National Council of the Churches of Christ in the U.S.A., and are used by permission. All rights reserved. Photos: Cover photo: African News Agency (ANA) Pages 19, 28: Photo courtesy of Polokwane Municipality (Polokwane Museums). Page 157: Trevor Slade Page 196: [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)] Page 200: South Africa The Good News/www.sagoodnews.co.za [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)] Page 212: Gallo Images/Die Burger/Nasief Manie Pages 142, 214, 226: Anglican Communion News Service Page 220: John Allen ISBN: 978-0-88028-470-7 © 2019 Archbishop Thabo Makgoba North American printer and distributor: Forward Movement, 412 Sycamore Street, Cincinnati, Ohio 45202 First North American edition, 2019 All rights reserved. Printed in the USA Table of Contents Foreword by Graça Machel .................................................................. ix Preface ................................................................................................ xi Chapter 1 Makgoba’s Kloof ........................................................... 15 Chapter 2 Alexandra .................................................................... 33 Chapter 3 Soweto ........................................................................
    [Show full text]
  • Taxonomic Revision of South African Memecylon (Melastomataceae–Olisbeoideae), Including Three New Species
    Phytotaxa 418 (3): 237–257 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.418.3.1 Taxonomic revision of South African Memecylon (Melastomataceae—Olisbeoideae), including three new species ROBERT DOUGLAS STONE1, IMERCIA GRACIOUS MONA2, DAVID STYLES3, JOHN BURROWS4 & SYD RAMDHANI5 1School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa; [email protected] 2,5School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; [email protected], [email protected] 327A Regina Road, Umbilo, Durban 4001, South Africa; [email protected] 4Buffelskloof Nature Reserve Herbarium, Lydenburg, South Africa; [email protected] Abstract Earlier works recognised two South African species Memecylon bachmannii and M. natalense within M. sect. Buxifolia, but recent molecular analyses have revealed that M. natalense as previously circumscribed is not monophyletic and includes several geographically outlying populations warranting treatment as distinct taxa. In this revision we recognise five endemic South African species of which M. bachmannii and M. natalense are both maintained but with narrower circumscriptions, and M. kosiense, M. soutpansbergense and M. australissimum are newly described. Memecylon kosiense is localised in north-eastern KwaZulu-Natal (Maputaland) and is closely related to M. incisilobum of southern Mozambique. Memecylon soutpansbergense, from Limpopo Province, was previously confused with M. natalense but is clearly distinguished on vegetative characters. Memecylon australissimum occurs in the Eastern Cape (Hluleka and Dwesa-Cwebe nature reserves) and has relatively small leaves like those of M. natalense, but the floral bracteoles are persistent and the fruit is ovoid as in M.
    [Show full text]
  • South Africa's Important Bird and Biodiversity Areas
    South Africa’s Important Bird and Biodiversity Areas STATUS REPORT 2015 ACKNOWLEDGEMENTS CONTENTS THANKS TO OUR DONORS Government departments: CapeNature; City of Cape Town; Eastern Cape Parks and Tourism Acknowledgements Agency; Ezemvelo KwaZulu-Natal Wildlife; Free State Department of Tourism, Economic Develop- ment and Environmental Affairs; Gauteng Department of Agriculture and Rural Development; EXECUTIVE SUMMARY 2 Limpopo Department of Economic Development, Environment and Tourism; Mpumalanga Tourism and Parks Agency; National Department of Environmental Affairs; North West Parks and Tourism Board; and South African National Parks. ACRONYMS 3 Rupert Nature Foundation Partners: Animal Demography Unit; BirdLife International; BirdLife Partnership African Secretariat; BACKGROUND 4 Endangered Wildlife Trust; Overberg Lowlands Conservation Trust; Percy FitzPatrick Institute of Objectives of the IBA Status Report 4 African Ornithology; NCC Environmental Services; South African National Biodiversity Institute; What are IBAs? 5 University of Cape Town; Wildlife and Environment Society of South Africa; and World Wide Fund for Aims of the IBA Programme 6 Nature–South Africa. How are IBAs identified? 6 Charmaine Uys is thanked for her valuable contribution to BirdLife South Africa’s IBA Programme Monitoring the state of IBAs 7 while she was the regional conservation manager for Mpumalanga and Free State, including Key Biodiversity Areas 7 collecting data that contributed to this report. Jack MitcHELL Thank you to all the private and provincial nature reserve managers, private landowners, METHODOLOGY 9 ornithologists, birders and bird clubs, ‘Friends of’ groups, regional bird club forums and regional South Africa’s Important Bird and conservation committees who assisted with support, land access, providing information and SOUTH AFRICA’S IBAs 10 Biodiversity Areas Status Report 2015 collecting data.
    [Show full text]