Barriers to Gene Exchange in Hybridizing Field Crickets: the Role Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soundscape of Urban-Tolerant Crickets (Orthoptera: Gryllidae, Trigonidiidae) in a Tropical Southeast Asia City, Singapore Ming Kai Tan
Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore Ming Kai Tan To cite this version: Ming Kai Tan. Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore. 2020. hal-02946307 HAL Id: hal-02946307 https://hal.archives-ouvertes.fr/hal-02946307 Preprint submitted on 23 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a 2 tropical Southeast Asia city, Singapore 3 4 Ming Kai Tan 1 5 6 1 Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire 7 naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France; 8 Email: [email protected] 9 10 11 1 12 Abstract 13 14 Urbanisation impact biodiversity tremendously, but a few species can still tolerate the harsh 15 conditions of urban habitats. Studies regarding the impact of urbanisation on the soundscape 16 and acoustic behaviours of sound-producing animals tend to overlook invertebrates, including 17 the crickets. Almost nothing is known about their acoustic community in the urban 18 environment, especially for Southeast Asia where rapid urbanisation is widespread. -
THE QUARTERLY REVIEW of BIOLOGY
VOL. 43, NO. I March, 1968 THE QUARTERLY REVIEW of BIOLOGY LIFE CYCLE ORIGINS, SPECIATION, AND RELATED PHENOMENA IN CRICKETS BY RICHARD D. ALEXANDER Museum of Zoology and Departmentof Zoology The Universityof Michigan,Ann Arbor ABSTRACT Seven general kinds of life cycles are known among crickets; they differ chieff,y in overwintering (diapause) stage and number of generations per season, or diapauses per generation. Some species with broad north-south ranges vary in these respects, spanning wholly or in part certain of the gaps between cycles and suggesting how some of the differences originated. Species with a particular cycle have predictable responses to photoperiod and temperature regimes that affect behavior, development time, wing length, bod)• size, and other characteristics. Some polymorphic tendencies also correlate with habitat permanence, and some are influenced by population density. Genera and subfamilies with several kinds of life cycles usually have proportionately more species in temperate regions than those with but one or two cycles, although numbers of species in all widely distributed groups diminish toward the higher lati tudes. The tendency of various field cricket species to become double-cycled at certain latitudes appears to have resulted in speciation without geographic isolation in at least one case. Intermediate steps in this allochronic speciation process are illustrated by North American and Japanese species; the possibility that this process has also occurred in other kinds of temperate insects is discussed. INTRODUCTION the Gryllidae at least to the Jurassic Period (Zeuner, 1939), and many of the larger sub RICKETS are insects of the Family families and genera have spread across two Gryllidae in the Order Orthoptera, or more continents. -
Influence of Female Cuticular Hydrocarbon (CHC) Profile on Male Courtship Behavior in Two Hybridizing Field Crickets Gryllus
Heggeseth et al. BMC Evolutionary Biology (2020) 20:21 https://doi.org/10.1186/s12862-020-1587-9 RESEARCH ARTICLE Open Access Influence of female cuticular hydrocarbon (CHC) profile on male courtship behavior in two hybridizing field crickets Gryllus firmus and Gryllus pennsylvanicus Brianna Heggeseth1,2, Danielle Sim3, Laura Partida3 and Luana S. Maroja3* Abstract Background: The hybridizing field crickets, Gryllus firmus and Gryllus pennsylvanicus have several barriers that prevent gene flow between species. The behavioral pre-zygotic mating barrier, where males court conspecifics more intensely than heterospecifics, is important because by acting earlier in the life cycle it has the potential to prevent a larger fraction of hybridization. The mechanism behind such male mate preference is unknown. Here we investigate if the female cuticular hydrocarbon (CHC) profile could be the signal behind male courtship. Results: While males of the two species display nearly identical CHC profiles, females have different, albeit overlapping profiles and some females (between 15 and 45%) of both species display a male-like profile distinct from profiles of typical females. We classified CHC females profile into three categories: G. firmus-like (F; including mainly G. firmus females), G. pennsylvanicus-like (P; including mainly G. pennsylvanicus females), and male-like (ML; including females of both species). Gryllus firmus males courted ML and F females more often and faster than they courted P females (p < 0.05). Gryllus pennsylvanicus males were slower to court than G. firmus males, but courted ML females more often (p < 0.05) than their own conspecific P females (no difference between P and F). -
Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system. -
The Neuromuscular Mechanism of Stridulation in Crickets (Orthoptera: Gryllidae)
J. Exp. Biol. (1966), 45, isi-164 151 With 8 text-figures Printed in Great Britain THE NEUROMUSCULAR MECHANISM OF STRIDULATION IN CRICKETS (ORTHOPTERA: GRYLLIDAE) BY DAVID R. BENTLEY AND WOLFRAM KUTSCH Department of Zoology, University of Michigan, Aim Arbor, and Institute for Comparative Animal Physiology, University of Cologne {Received 21 February 1966) INTRODUCTION Study of the insect neuromuscular system appears very promising as a means of explaining behaviour in terms of cellular operation. The relatively small number of neurons, the ganglionic nature of the nervous system, the simplicity of the neuro- muscular arrangement, and the repetitiveness of behavioural sequences all lend them- selves to a solution of this problem. As a result, an increasing number of investigators have been turning their attention to insects and especially to the large orthopterans. Recently, Ewing & Hoyle (1965) and Huber (1965) reported on muscle activity underlying sound production in crickets. The acoustic behaviour is well understood (Alexander, 1961) and in the genera Gryllus, Acheta and Gryllodes communication is mediated by three basic songs composed of three types of pulses. While working independently on this system at the University of Cologne (W.K.) and the University of Michigan (D.B.) using various Gryllus species, we found a number of basic differences between the muscle activity in our crickets and that reported by Ewing & Hoyle (1965) for Acheta domesticus. These two genera, Gryllus and Acheta, are so nearly identical that they are distinguished solely by differences in the male genitalia (Chopard, 1961). The present paper constitutes a survey of muscle activity patterns producing stridulation in four species of field crickets. -
Pet-Feeder Crickets.Pdf
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3504: 67–88 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:12E82B54-D5AC-4E73-B61C-7CB03189DED6 Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster DAVID B. WEISSMAN1, DAVID A. GRAY2, HANH THI PHAM3 & PETER TIJSSEN3 1Department of Entomology, California Academy of Sciences, San Francisco, CA 94118. E-mail: [email protected] 2Department of Biology, California State University, Northridge, CA 91330. E-mail: [email protected] 3INRS-Institut Armand-Frappier, Laval QC, Canada H7V 1B7. E-mail: [email protected]; [email protected] Abstract The cricket pet food industry in the United States, where as many as 50 million crickets are shipped a week, is a multi- million dollar business that has been devastated by epizootic Acheta domesticus densovirus (AdDNV) outbreaks. Efforts to find an alternative, virus-resistant field cricket species have led to the widespread USA (and European) distribution of a previously unnamed Gryllus species despite existing USA federal regulations to prevent such movement. We analyze and describe this previously unnamed Gryllus and propose additional measures to minimize its potential risk to native fauna and agriculture. Additionally, and more worrisome, is our incidental finding that the naturally widespread African, European, and Asian “black cricket,” G. -
The Sand Cricket, Gryllus Firmus and Its Relevance to the Evolution of Wing Dimorphisms in Insects
Heredity 57 (1986) 221—231 The Genetical Society of Great Britain Received 4 December 1985 The genetic basis of wing dimorphism in the sand cricket, Gryllus firmus and its relevance to the evolution of wing dimorphisms in insects Derek A. Roff McGill University, Department of Biology, 1205 Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1. The sand cricket, Gryllus firmus is dimorphic with respect to wing length, some individuals being micropterous and others macropterous. The trait has a polygenic basis, micropterous parents producing a higher proportion of micropterous offspring than macropterous parents. The heritability of the trait, determined under a fixed photoperiod/temperature regime is 062 O•075 and 0•68 0•085 for males and females respectively. An alternate method of determining heritability based on a modified mid-parent on mean offspring regression is presented. This method is predicted to give an underestimate of heritability but permits an analysis of the separate influences of each parent. This analysis indicates the heritability in males and females to be 055 and that there are no maternal effects under the particular rearing conditions. A 5 hour shift in the photoperiod appears not to drastically change the heritability but a change in rearing temperature from 30°C to 25°C probably reduces it. Field observations suggest that at certain times of the year heritability may be relatively high whereas at others it could be very low. The adaptive significance of wing polymorphism and its evolution is discussed. INTRODUCTION the stability of the habitat, the benefits such as increased fecundity of being flightless and the Withrelatively few exceptions the environment of genetic basis of the trait. -
New Species and Records of Some Crickets (Gryllinae: Gryllidae: Orthoptera) from Pakistan
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2000/02–3–175–182 New Species and Records of some Crickets (Gryllinae: Gryllidae: Orthoptera) from Pakistan AZHAR SAEED, MUHAMMAD SAEED† AND MUHAMMAD YOUSUF Department of Agricultural Entomology, University of Agriculture, Faisalabad–38040, Pakistan †Nichimen Corporation, 20/11 U-Block, New Multan Colony, Multan ABSTRACT Adult crickets were collected from various localities of Pakistan and identified upto species level. The species of eight genera, viz., Tarbinskiellus, Phonarellus, Callogryllus, Plebiogryllus, Tartarogryllus, Gryllopsis, Gryllus and Gryllodes belonging to the subfamily Gryllinae are presented. Each genus is represented by a single species in Pakistan. The former five genera and their representative species are new record to the area, while two species, i.e. Callogryllus ovilongus and Plebiogryllus retiregularis are new to science. New taxa are described in detail, while only the differential and ew characters, if any, from the published descriptions, are given in case of already described species. Key Words: Systematics; Crickets; Gryllinae INTRODUCTION Pakistan along-with its distribution and habitat. This comprehensive study yielded a large number of Crickets are commonly met insects. They are specimens of the crickets. The subfamily Gryllinae was important to us due to two reasons: firstly, being pests of represented by 16 genera from the area, however out of various agricultural crops, vegetables, lawns, ornamental these only eight are presented here. plants, harvested grains both ate threshing floors and in godowns, and household articles, and secondly, being MATERIALS AND METHODS predators of small insects. As pests, cricket species such as Gryllus bimaculatus plays havoc by feeding Adult crickets were collected from various voraciously on seed and seedlings of cotton, millets and localities of the four climatic regions of Pakistan as oil-seeds every year necessitating re-sowing of the crop detailed by Ahmad (1951). -
Endecous Apterus
Zootaxa 3784 (2): 120–130 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3784.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:8B46F8FF-DE66-44A3-99D7-E70D09207265 Endecous apterus: A new species of cave cricket from northeast Brazil, with com- ments on the use of subterranean habitats by Luzarinae crickets (Orthoptera: Grylloidea: Phalangopsidae: Luzarinae) PEDRO G. B. SOUZA-DIAS1,4, MÁRCIO P. BOLFARINI2, SILVIO S. NIHEI1 & FRANCISCO A.G. DE MELLO3 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, rua do Matão, travessa 14, n. 101, 05508-900, Cidade Universitária, São Paulo, SP, Brazil. 2Laboratório de Estudos Subterrâneos, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, rod. Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil. 3Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, distrito de Rubião Jr., s/n, 18618-000, Botu- catu, SP, Brazil. 4Corresponding author: Pedro G. B. Souza-Dias ([email protected]) Abstract In this study we describe the first apterous species of Endecous Saussure (1878), collected in two caves at Ituaçu, Bahia State, Brazil. In Brazil, Endecous is the most widespread cricket in hypogean environments and its species can colonize caves and inhabit the entrance and the aphotic zones; Endecous species can also be found in the litter, rock gullies, crev- ices, burrows, and any natural cavities. The use of subterranean habitat by Endecous crickets and its related genera are discussed. Key words: Grylloidea, Phalangopsidae, Luzarinae, New species, Cave life Resumo Neste estudo descrevemos a primeira espécie áptera de Endecous Saussure (1878), coletada em duas cavernas em Ituaçu, Bahia, Brasil. -
Baseline Biodiversity Report
FINAL Baseline Biodiversity Survey for Potrero Mason Property Prepared for: County of San Diego Department of Parks and Recreation 5500 Overland Avenue Drive, Suite 410 San Diego, California 92123 Contact: Jennifer Price Prepared by: 605 Third Street Encinitas, California 92024 Contact: Brock Ortega DECEMBER 2012 Printed on 30% post-consumer recycled material. Final Baseline Biodiversity Survey Potrero Mason Property TABLE OF CONTENTS Section Page No. LIST OF ACRONYMS ................................................................................................................ V EXECUTIVE SUMMARY .......................................................................................................VII 1.0 INTRODUCTION..............................................................................................................1 1.1 Purpose of the Report.............................................................................................. 1 1.2 MSCP Context ........................................................................................................ 1 2.0 PROPERTY DESCRIPTION ...........................................................................................9 2.1 Project Location ...................................................................................................... 9 2.2 Geographical Setting ............................................................................................... 9 2.3 Geology and Soils .................................................................................................. -
Orthoptera: Gryllidae: Gryllinae) from Korea
Anim. Syst. Evol. Divers. Vol. 28, No. 2: 140-144, April 2012 http://dx.doi.org/10.5635/ASED.2012.28.2.140 Short communication First Record of the Field-Cricket Turanogryllus eous (Orthoptera: Gryllidae: Gryllinae) from Korea Tae-Woo Kim* National Institute of Biological Resources, Incheon 404-170, Korea ABSTRACT The field-cricket Turanogryllus eous Bey-Bienko, 1956 and its genus Turanogryllus Tarbinsky, 1940 were recorded for the first time from Chungcheongbuk-do province in Korea to carry out the project ‘The sound guides to Korean animals.’ Depending on the discovery of the cricket, its distributional ranges are more widened towards East Asia to the Korean peninsula from China mainland, the Turanogryllus was 10th to known Gryllinae genera in Korea. Description, photos of habitus, figure of male genitalia, oscillogram and spectrogram for the calling sound are provided for aid identification. Voucher specimens are deposited in the collection of National Institute of Biological Resources, Incheon, Korea. Keywords: Orthoptera, Gryllidae, Gryllinae, Turanogryllus eous, new record, Korea INTRODUCTION (hear Kim, 2011). Second year in 2011, my colleague Mr. Sung Ki-Soo informed me that he had found a habitat of the One of the field-cricket genus Turanogryllus was established field-cricket from the Jecheon City province near Chungju by Tarbinsky (1940). Until now, 32 species have been des- City. The collecting was successful for more confirmation. cribed throughout the world from Eurasia (Afghanistan, Ara- Based on the microscopic observation of the specimens bia, China, Iran, Israel, and Russia), Indo-Malaysia (India, and morphological comparison from the earlier literatures, Laos, Nepal, and Pakistan), and Africa (Angola, Egypt, Gui- the field-cricket was identified to be ‘Turanogryllus eous nea, Kenya, Sierra Leon, Zaire, and Zambia) (Otte, 1994). -
Sand Field Cricket, Gryllus Firmus Scudder (Insecta: Orthoptera: Gryllidae)1 Thomas J
EENY066 Sand Field Cricket, Gryllus firmus Scudder (Insecta: Orthoptera: Gryllidae)1 Thomas J. Walker2 Introduction The sand field cricket, Gryllus firmus, is the common chirping field cricket of lawns, pastures, and roadsides throughout Florida. Overview of Florida field crickets Distribution Sand field crickets occur throughout the southeastern United States. To the north and west the species is replaced by the fall field cricket (Gryllus pennsylvanicus). In areas of contact the two hybridize to a minor extent. Identification The sand field cricket, which chirps, often occurs intermixed with either the southeastern field cricketor the Texas field cricket, both of which are trilling species. These differences in song are stark (song comparisons) as are the Figure 1. Distribution of sand field cricket in the United States. differences in the numbers of teeth and spacing of the teeth in the stridulatory files used to make the songs. The only Life Cycle readily accessible morphological difference between the Sand field crickets have the most variable life cycle known sand field cricket and the two trilling species is the color for field crickets. During much of the year females lay some pattern on the forewings. eggs that hatch within a few weeks at room temperatures and other eggs that take a month or two to hatch under the In southern Florida, where sand and Jamaican field crickets same conditions. Furthermore, if potentially quick-hatching co-occur, the color pattern of the head will separate the two. eggs are exposed to cool temperatures, some lose that potential. Nymphal development is also variable with some 1. This document is EENY066, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.