The Explanatory Power of Radical Behaviorism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHAPTER Personality TEN Psychology
10/14/08 CHAPTER Personality TEN Psychology Psychology 370 Sheila K. Grant, Ph.D. SKINNER AND STAATS: Professor California State University, Northridge The Challenge of Behaviorism Chapter Overview Chapter Overview RADICAL BEHAVIORISM: SKINNER Part IV: The Learning Perspective PSYCHOLOGICAL BEHAVIORISM: STAATS Illustrative Biography: Tiger Woods Reinforcement Behavior as the Data for Scientific Study The Evolutionary Context of Operant Behavior Basic Behavioral Repertoires The Rate of Responding The Emotional-Motivational Repertoire Learning Principles The Language-Cognitive Repertoire Reinforcement: Increasing the Rate of Responding The Sensory-Motor Repertoire Punishment and Extinction: Decreasing the Rate of Situations Responding Additional Behavioral Techniques Psychological Adjustment Schedules of Reinforcement The Nature-Nurture Question from the Applications of Behavioral Techniques Perspective of Psychological Behaviorism Therapy Education Radical Behaviorism and Personality Theory: Some Concerns Chapter Overview Part IV: The Learning Perspective Personality Assessment from a Ivan Pavlov: Behavioral Perspective Heuristic Accendental Discovery The Act-Frequency Approach to Personality Classical Conditioning Measurement John B. Watson: Contributions of Behaviorism to Personality Theory and Measurement Early Behaviorist B. F. Skinner: Radical Behaviorism Arthur Staats: Psychological Behaviorism 1 10/14/08 Conditioning—the process of learning associations . Ivan Pavlov Classical Conditioning Operant Conditioning . 1849-1936 -
Truth, Rationality, and the Growth of Scientific Knowledge
....... CONJECTURES sense similar to that in which processes or things may be said to be parts of the world; that the world consists of facts in a sense in which it may be said to consist of (four dimensional) processes or of (three dimensional) things. They believe that, just as certain nouns are names of things, sentences are names of facts. And they sometimes even believe that sentences are some- thing like pictures of facts, or that they are projections of facts.7 But all this is mistaken. The fact that there is no elephant in this room is not one of the processes or parts ofthe world; nor is the fact that a hailstorm in Newfound- 10 land occurred exactIy I I I years after a tree collapsed in the New Zealand bush. Facts are something like a common product oflanguage and reality; they are reality pinned down by descriptive statements. They are like abstracts from TRUTH, RATIONALITY, AND THE a book, made in a language which is different from that of the original, and determined not only by the original book but nearly as much by the principles GROWTH OF SCIENTIFIC KNOWLEDGE of selection and by other methods of abstracting, and by the means of which the new language disposes. New linguistic means not only help us to describe 1. THE GROWTH OF KNOWLEDGE: THEORIES AND PROBLEMS new kinds of facts; in a way, they even create new kinds of facts. In a certain sense, these facts obviously existed before the new means were created which I were indispensable for their description; I say, 'obviously' because a calcula- tion, for example, ofthe movements of the planet Mercury of 100 years ago, MY aim in this lecture is to stress the significance of one particular aspect of carried out today with the help of the calculus of the theory of relativity, may science-its need to grow, or, if you like, its need to progress. -
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1 The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. – Marcel Proust A huge part of Philosophical Inquiry is learning how to see the world with new eyes. To accomplish this goal, you will be introduced to the “ten lenses of philosophical inquiry.” The ten lenses of philosophical inquiry are tools to help us critically engage with, and analyze ourselves, and the world around us. Like a pair of glasses, the ten lenses help to change our perception and give us the power to re-examine our reality. In this philosophical inquiry research project you will get introduced to each of the ten lenses so that you become comfortable using the lenses both inside and out of our class. You will also learn more about a philosopher, their philosophy and the lens of philosophical inquiry that they are most clearly connected to. Focus Question What are the ten lenses of philosophical inquiry, and what are some examples of how they are connected to the philosophies of different philosopher’s throughout history? Philosophical Inquiry Research Process 1) QUESTION - Develop the philosophical questions that you will use to drive your inquiry. 2) PLAN – Determine the types of sources that you will need to answer your questions. 3) GATHER EVIDENCE – Gather the information (textual, visual, quantitative, etc.) you need to explore and answer your questions. 4) ANALYZE – Analyze the answers to your questions, making sure to keep in mind the larger focus question guiding this inquiry. 5) COMMUNICATE CONCLUSIONS – Use evidence and reasons to write an organized (logically sequenced) explanation to the inquiry’s topic/focus question. -
A(Nthony) Charles Catania Curriculum Vitae August 2018
A(nthony) Charles Catania Curriculum Vitae August 2018 Date of Birth, New York, NY: 22 June 1936 Married: Constance Julia Britt, 10 February 1962 Children: William John, 3 February 1964 Kenneth Charles, 5 November 1965 Educational History P.S. 132, Manhattan; Bronx High School of Science, Class of 1953 A.B., Columbia College, 1957 New York State Regents Scholarship; Phi Beta Kappa; Highest Honors with Distinction in Psychology M.A., Columbia University, 1958 Ph.D. in Psychology, Harvard University, 1961 (March) National Science Foundation Fellow, 1958-60 Professional History Columbia College Teaching Assistant, 1956-58 Bell Telephone Laboratories Research Technician (under H. M. Jenkins), Summer 1958 Harvard University Research Fellow in Psychology (supported by B. F. Skinner’s NSF Grant), 1960-62 Smith Kline and French Laboratories Senior Pharmacologist (under L. Cook), 1962-64 University College of Arts and Science, New York University Assistant Professor, 1964-66; Associate Professor, 1966-69; Professor and Department Chair, 1969-73 University of Maryland, Baltimore County (UMBC) Professor, 1973-2008; Program Director/CoDirector, Applied Behavior Analysis MA track, 1998- 2007; Professor Emeritus, Departmental Curmudgeon, 2008- University of Wales (formerly University College of North Wales) Professorial Fellow and Fulbright Senior Research Fellow, 1986-87; Visiting Research Fellow, 1989- Keio University, Tokyo, Japan Visiting Professor, July 1992 Office: Department of Psychology (Emeritus Faculty office, Sondheim 012) University of -
On Spirituality Century with the Rise of Secular Views on Spirituality [10, 11]
February 2008 The Irish Psychologist ARTICLE historical and conceptual coupling between religiosity and spirituality, a conceptual coupling that has been thrown into disarray over the past On Spirituality century with the rise of secular views on spirituality [10, 11]. I recently asked a group of third year Part 1: Deconstructing, students, "Do you think psychologists should study spirituality?" Some of grappling, and moving in the them said, "No, spirituality cannot be observed or objectively measured – it has no place in psychological field of others science." I wondered if this reply reflected a misunderstanding of Michael J. Hogan the goals of psychological science - a curious negation of certain Mike Hogan is a lecturer in psychology at the National University of Ireland, categories of human experience as a Galway. Correspondence regarding this article may be addressed by email to focus of inquiry - or simply a dislike [email protected]. for entertaining ideas that are in some way associated with orthodox religion. In truth, I cannot claim to have direct The highest activity a human being can and every attempt to construct an access to the minds of my students, attain is learning for understanding, objective account of consciousness and I can only speculate as to why because to understand is to be free struggles with the problem of human they think the way they think. At the Baruch Spinoza, Ethics subjectivity [6, 7]. Consciousness same time, even though the students itself - coupled with our prolific failed to tell me what spirituality is, We are staggeringly lucky to find imaginations - can offer us a sense many students did at least consider ourselves in the spotlight. -
A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry
Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2019 A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry Karina Bucciarelli Follow this and additional works at: https://scholarship.claremont.edu/scripps_theses Part of the Epistemology Commons, Feminist Philosophy Commons, and the Philosophy of Science Commons Recommended Citation Bucciarelli, Karina, "A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry" (2019). Scripps Senior Theses. 1365. https://scholarship.claremont.edu/scripps_theses/1365 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. A FEMINIST EPISTEMOLOGICAL FRAMEWORK: PREVENTING KNOWLEDGE DISTORTIONS IN SCIENTIFIC INQUIRY by KARINA MARTINS BUCCIARELLI SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE DEGREE OF BACHELOR OF ARTS PROFESSOR SUSAN CASTAGNETTO PROFESSOR RIMA BASU APRIL 26, 2019 Bucciarelli 2 Acknowledgements First off, I would like to thank my wonderful family for supporting me every step of the way. Mamãe e Papai, obrigada pelo amor e carinho, mil telefonemas, conversas e risadas. Obrigada por não só proporcionar essa educação incrível, mas também me dar um exemplo de como viver. Rafa, thanks for the jokes, the editing help and the spontaneous phone calls. Bela, thank you for the endless time you give to me, for your patience and for your support (even through WhatsApp audios). To my dear friends, thank you for the late study nights, the wild dance parties, the laughs and the endless support. -
Principles of Scientific Inquiry
Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis. -
175 Alexandra Rutherford's Major Premise, She Tells Us, Is That B.F. Skinner Has Had an Enduring Impact on American Society An
Behavior and Social Issues, 18, 175-177 (2009). © Peter Lamal. Readers of this article may copy it without the copyright owner’s permission, if the author and publisher are acknowledged in the copy and the copy is used for educational, not-for-profit purposes. FROM RATS AND PIGEONS TO CULTURAL PRACTICES: A REVIEW OF BEYOND THE BOX: B. F. SKINNER’S TECHNOLOGY OF BEHAVIOR FROM LABORATORY TO LIFE, 1950S TO 1970S BY ALEXANDRA RUTHERFORD (2009). Toronto: University of Toronto Press. ISBN 978-0-8020-9774-3. 224 pp. $55.00. Alexandra Rutherford’s major premise, she tells us, is that B.F. Skinner has had an enduring impact on American society and her book describes the how, when, where, and why of this impact. Furthermore, although the experimental analysis of behavior and the philosophy of radical behaviorism continue to be vibrant areas, Rutherford’s thesis is that Skinner’s lasting impact is due to his development of, and adoption by others, of his technology of behavior, “Skinner’s most enduring achievement was to treat human behavior change like any other technological problem” (p. 10). At the same time, however, Rutherford reminds us that Skinner’s system was and continues to be rejected by many on philosophical grounds and by others on ethical grounds. This book outlines the evolution of Skinner’s behavioral technology by describing several projects undertaken during the 1950s through the 1970s. The development of the experimental analysis of behavior relied heavily upon experiments with pigeons and rats in free operant chambers, the latter often referred to as Skinner Boxes, after their inventor. -
Experiential & Inquiry-Based Learning with Youth in Non-Formal Settings
Working with youth in non-formal settings ensuring rich enrichment Experiential & Inquiry-based Learning with Youth in Non-formal Settings 4-H Science learning for youth can be deepened by building inquiry-based learning methods into programs and curricula. For over two decades of educational reform, science education has focused on inquiry as a method for learning and doing natural science in formal classrooms. When used to make sense of the natural world from within the discipline of science, inquiry-based learning is ‘scientific inquiry. ’ Non-formal program designers and practitioners are faced with decisions about which scientific inquiry methods to transfer from the formal classroom to the non-formal setting, which methods to adapt to better fit the non-formal learning needs of youth, and how to best prepare adults to facilitate scientific inquiry with youth. Why is this thinking important to 4-H staff and volunteers? Evaluation results indicate that inquiry-based methods support youth in Key Concepts their learning. Minner et al (2010) reviewed 138 evaluation studies and found that inquiry-based approaches in the science, engineering, technology ,and math Experiential learning: content areas had the largest effect sizes, or made the greatest positive Constructing learning through hands-on experiences that are difference, when there was an emphasis on active learning and involvement in highly social in nature. the investigative process (asking questions, designing investigations, collecting data, drawing conclusions, communicating findings). Hands-on experiences with Inquiry-based learning: Constructing learning through natural phenomena were also found to be associated with increased conceptual hands-on experiences that provide learning in the science content investigated. -
The Stoics and the Practical: a Roman Reply to Aristotle
DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in -
Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding
1740 - Treatise of Human Nature Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding Recall: Subject of confirmation = How scientific claims are justified. This assumes that they are capable of justification in the first place. Hume asks: Is there a rational basis for inductive inferences? Hume response: No! Consequence: To the extent that scientific claims are based on inductive inferences, they cannot be justified. Example: All observed ravens are black. Hume asks, Can we ever be justified in believing the conclusion? All ravens are black. Two types of objects of knowledge, according to Hume (I) Relations of ideas = Products of deductive (truth-preserving) Ex: 2 + 2 = 4 inferences; negation entails a contradiction. (II) Matters of fact = Products of inductive inferences; negation does Ex: All ravens are black. not entail a contradiction. Outline of Hume's Argument (1) Matters of fact can only be known through experience ("a posteriori"). (2) Therefore matters of fact can only be justified by recourse to experience. (3) But any attempt to do so is circular. ∴ There is no justification for inductive inferences. ASIDE 1. Hume is not just saying that we can never be certain about inductive inferences (i.e., we can never be 100% certain that all ravens are black). This would be uncontentious: Most people would agree that there's always room for error in making an inductive inference. However, most people would at the same time claim that we are justified in making (some) inductive inferences, even though they aren't 100% guaranteed to work (i.e., we think there are standards by which we can judge good inductive inferences from bad ones). -
Contrastive Empiricism
Elliott Sober Contrastive Empiricism I Despite what Hegel may have said, syntheses have not been very successful in philosophical theorizing. Typically, what happens when you combine a thesis and an antithesis is that you get a mishmash, or maybe just a contradiction. For example, in the philosophy of mathematics, formalism says that mathematical truths are true in virtue of the way we manipulate symbols. Mathematical Platonism, on the other hand, holds that mathematical statements are made true by abstract objects that exist outside of space and time. What would a synthesis of these positions look like? Marks on paper are one thing, Platonic forms an other. Compromise may be a good idea in politics, but it looks like a bad one in philosophy. With some trepidation, I propose in this paper to go against this sound advice. Realism and empiricism have always been contradictory tendencies in the philos ophy of science. The view I will sketch is a synthesis, which I call Contrastive Empiricism. Realism and empiricism are incompatible, so a synthesis that merely conjoined them would be a contradiction. Rather, I propose to isolate important elements in each and show that they combine harmoniously. I will leave behind what I regard as confusions and excesses. The result, I hope, will be neither con tradiction nor mishmash. II Empiricism is fundamentally a thesis about experience. It has two parts. First, there is the idea that experience is necessary. Second, there is the thesis that ex perience suffices. Necessary and sufficient for what? Usually this blank is filled in with something like: knowledge of the world outside the mind.