Silver and Gold

Total Page:16

File Type:pdf, Size:1020Kb

Silver and Gold LifeMode Group: Senior Styles 9A Silver and Gold Households: 942,900 Average Household Size: 2.03 Median Age: 63.2 Median Household Income: $72,100 WHO ARE WE? OUR NEIGHBORHOOD SOCIOECONOMIC TRAITS Almost the oldest senior market, Silver and Gold is the • Residents of Silver and Gold prefer a more • 47% have college degree(s). most affluent. The affluence of Silver and Gold has afforded bucolic setting, but close to metropolitan • Primarily retired, but many still active the opportunity to retire to sunnier climates that feature cities. in the labor force, participation rate of 41%. exclusive communities and vacation homes. These consum- • Predominantly single-family, owner- ers have the free time, stamina, and resources to do what • Self-employment is the highest across all occupied homes that have a median value Tapestry markets (Index 218). they enjoy. This market is smaller but growing. of $385,700 (Index 186). • More than half of the households receive • Neighborhoods include seasonal or vaca- income from wages/salaries, Social Security, tion homes, reflected in the high vacancy or investments, many drawing rate of 43%. retirement income (Index 213). • Mostly older married couples with • Connected, but primarily to get news and no children, average household size is 2.03. track investments, more likely to own an e-reader or tablet than a smartphone. TAPESTRY TM SEGMENTATION esri.com/tapestry Note: The Index represents the ratio of the segment rate to the US rate multiplied by 100. Consumer preferences are estimated from data by MRI-Simmons. LifeMode Group: Senior Styles TAPESTRY TM 9A SEGMENTATION Silver and Gold esri.com/tapestry AGE BY SEX (Esri data) RACE AND ETHNICITY (Esri data) INCOME AND NET WORTH The Diversity Index summarizes racial and ethnic diversity. The index Net worth measures total household assets (homes, vehicles, Median Age: 63.2 US: 38.2 shows the likelihood that two persons, chosen at random from the investments, etc.) less any debts, secured (e.g., mortgages) $357,100 Indicates US same area, belong to different race or ethnic groups. The index or unsecured (credit cards). Household income and Esri Median Net Worth Age by Sex - Male Chart Title ranges from 0 (no diversity) to 100 (complete diversity). net worth$93,300 are estimated by Esri. 85+ Female Age 85+ Male Age 85+ 80–84 Female Age 80-84 Male Age 80-84 Diversity Index: 24.1 US: 64.0 75–79 Female Age 75-79 Male Age 75-79 Median Household Income 70–74 Female Age 70-74 Male Age 70-74 Hispanic* 65–69 Female Age 65-69 Male Age 65-69 $72,100 60–64 Female Age 60-64 Male Age 60-64 55–59 Female Age 55-59 Male Age 55-59 Multiple Esri Median HH Income 50–54 Female Age 50-54 Male Age 50-54 $56,100 45–49 Female Age 45-49 Male Age 45-49 Other 40–44 Female Age 40-44 Male Age 40-44 Female Age 35-39 Male Age 35-39 0 $100K $200K $300K $400K $500K $600K+ 35–39 Asian and $0 $100,000 $200,000 $300,000 $400,000 $500,000 $600,000 Series2 Series1 30–34 Female Age 30-34 Male Age 30-34 Pac. Islander 25–29 Female Age 25-29 Male Age 25-29 20–24 Female Age 20-24 Male Age 20-24 American Median Net Worth Indian 15–19 Female Age 15-19 Male Age 15-19 10–14 Female Age 10-14 Male Age 10-14 Black $357,100 5–9 Female Age 5-9 Male Age 5-9 Esri Median Net Worth <5 Female Age 0-4 Male Age 0-4 92.3% 8.0% 7.0% 6.0% 5.0% 4.0% 3.0% 2.0% 1.0% 0.0%0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% White $93,300 Series2 Series1 Series2 Series1 8% 4% 0 4% 8% 0 20% 40% 60% 80% 100% 0 $100K $200K $300K $400K $500K $600K+ Male Female US Average. *Hispanic Can Be of Any Race. US Median. $72,100 Esri Median HH Income AVERAGE HOUSEHOLD BUDGET INDEX OCCUPATION BY$56,100 EARNINGS The index compares the average amount spent in this market’s household budgets for The five occupations with$0 the highest$100,000 number$200,000 of$300,000 workers$400,000 in the $500,000market $600,000are displayed Series2 Series1 housing, food, apparel, etc., to the average amount spent by all US households. An index by median earnings. Data from the Census Bureau’s American Community Survey. of 100 is average. An index of 120 shows that average spending by consumers in this market is 20 percent above the national average. Consumer expenditures are estimated by Esri. $140,000 Housing 132 $120,000 Food 131 $100,000 Apparel & Services 127 Earnings $80,000 Transportation 133 Health Care 153 $60,000 Median Entertainment & Recreation 139 $40,000 Education 112 $20,000 Pensions & Social Security 132 0 Other 145 40,000 80,000 120,000 0 50 100 150 200 250 300 350 Workers (Age 16+) LifeMode Group: Senior Styles TAPESTRY TM 9A SEGMENTATION Silver and Gold esri.com/tapestry MARKET PROFILE (Consumer preferences are estimated from data by MRI-Simmons.) HOUSING • Partial to luxury cars or SUVs; highest demand market for convertibles. Median home value is displayed for markets that are primarily owner occupied; average rent is shown for renter-occupied markets. Tenure and home value are estimated by Esri. Housing type and average • Active seniors that maintain a regular exercise regimen and pay attention to Chart Title healthier eating habits. rent are from the Census Bureau’s American Community Survey. • Pursue the luxuries that well-funded retirement affords: an active social life, travel, hobbies, and sports (especially golf and boating) and liberal use of home mainte- nance services to minimize chores. • Avid readers of newspapers, magazines (sports and travel), and books (audio, e-readers, or tablets). Home Own Ownership Rent • Generous supporters of charitable organizations. 83.2% US Percentage: 16.8% 62.7% Own Typical Housing: 37.3% Rent Single Family/Seasonal Median Value: $385,700 US Median: $207,300 Own Rent POPULATION CHARACTERISTICS ESRI INDEXES Total population, average annual population change since Census 2010, and average Esri developed three indexes to display average household wealth, socioeconomic status, density (population per square mile) are displayed for the market relative to the size and housing affordability for the market relative to US standards. and change among all Tapestry markets. Data estimated by Esri. 900,000 Population 11,000,000 0 241 350 1,940,100 Wealth Index -0.5% Population Growth (Annual %) 3.0% 0 148 350 1.3% Socioeconomic Status Index 0 Population Density (Persons per sq. mile) 25,000 1000 0 91 350 107 Housing Affordability Index LifeMode Group: Senior Styles TAPESTRY TM 9A SEGMENTATION Silver and Gold esri.com/tapestry SEGMENT DENSITY This map illustrates the density and distribution of the Silver and Gold Tapestry Segment by households. High Low For more information Copyright © 2021 Esri. All rights reserved. Esri, the Esri globe logo, The Science of Where, Tapestry, @esri.com, and esri.com are trademarks, service marks, or registered marks of Esri in the United States, the European Community, or certain other jurisdictions. Other companies 1-800-447-9778 and products or services mentioned herein may be trademarks, service marks, or registered marks of their respective mark owners. [email protected] G1804565 ESRI2C6/21dm esri.com.
Recommended publications
  • Treatise on Combined Metalworking Techniques: Forged Elements and Chased Raised Shapes Bonnie Gallagher
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 1972 Treatise on combined metalworking techniques: forged elements and chased raised shapes Bonnie Gallagher Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Gallagher, Bonnie, "Treatise on combined metalworking techniques: forged elements and chased raised shapes" (1972). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. TREATISE ON COMBINED METALWORKING TECHNIQUES i FORGED ELEMENTS AND CHASED RAISED SHAPES TREATISE ON. COMBINED METALWORKING TECHNIQUES t FORGED ELEMENTS AND CHASED RAISED SHAPES BONNIE JEANNE GALLAGHER CANDIDATE FOR THE MASTER OF FINE ARTS IN THE COLLEGE OF FINE AND APPLIED ARTS OF THE ROCHESTER INSTITUTE OF TECHNOLOGY AUGUST ( 1972 ADVISOR: HANS CHRISTENSEN t " ^ <bV DEDICATION FORM MUST GIVE FORTH THE SPIRIT FORM IS THE MANNER IN WHICH THE SPIRIT IS EXPRESSED ELIEL SAARINAN IN MEMORY OF MY FATHER, WHO LONGED FOR HIS CHILDREN TO HAVE THE OPPORTUNITY TO HAVE THE EDUCATION HE NEVER HAD THE FORTUNE TO OBTAIN. vi PREFACE Although the processes of raising, forging, and chasing of metal have been covered in most technical books, to date there is no major source which deals with the functional and aesthetic requirements
    [Show full text]
  • Repoussé Work for Amateurs
    rf Bi oN? ^ ^ iTION av op OCT i 3 f943 2 MAY 8 1933 DEC 3 1938 MAY 6 id i 28 dec j o m? Digitized by the Internet Archive in 2011 with funding from Boston Public Library http://www.archive.org/details/repoussworkforamOOhasl GROUP OF LEAVES. Repousse Work for Amateurs. : REPOUSSE WORK FOR AMATEURS: BEING THE ART OF ORNAMENTING THIN METAL WITH RAISED FIGURES. tfjLd*- 6 By L. L. HASLOPE. ILLUSTRATED. LONDON L. UPCOTT GILL, 170, STRAND, W.C, 1887. PRINTED BY A. BRADLEY, 170, STRAND, LONDON. 3W PREFACE. " JjJjtfN these days, when of making books there is no end," ^*^ and every description of work, whether professional or amateur, has a literature of its own, it is strange that scarcely anything should have been written on the fascinating arts of Chasing and Repousse Work. It is true that a few articles have appeared in various periodicals on the subject, but with scarcely an exception they treated only of Working on Wood, and the directions given were generally crude and imperfect. This is the more surprising when we consider how fashionable Repousse Work has become of late years, both here and in America; indeed, in the latter country, "Do you pound brass ? " is said to be a very common question. I have written the following pages in the hope that they might, in some measure, supply a want, and prove of service to my brother amateurs. It has been hinted to me that some of my chapters are rather "advanced;" in other words, that I have gone farther than amateurs are likely to follow me.
    [Show full text]
  • Silver Cas # 7440-22-4
    SILVER CAS # 7440-22-4 Agency for Toxic Substances and Disease Registry ToxFAQs July 1999 This fact sheet answers the most frequently asked health questions (FAQs) about silver. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Silver is an element found naturally in the environment. At very high levels, it may cause argyria, a blue-gray discoloration of the skin and other organs. This chemical has been found in at least 27 of the 1,177 National Priorities List sites identified by the Environmental Protection Agency (EPA). What is silver? o It may be released into water from photographic process­ ing. (Pronounced s≥l vír) o Rain may wash silver out of soil into the groundwater. Silver is a naturally occurring element. It is found in the o Silver does not appear to concentrate to a significant environment combined with other elements such as sulfide, extent in aquatic animals. chloride, and nitrate. Pure silver is “silver” colored, but silver nitrate and silver chloride are powdery white and silver sul­ fide and silver oxide are dark-gray to black. Silver is often How might I be exposed to silver? found as a by-product during the retrieval of copper, lead, o Breathing low levels in air.
    [Show full text]
  • Metals and Metal Products Tariff Schedules of the United States
    251 SCHEDULE 6. - METALS AND METAL PRODUCTS TARIFF SCHEDULES OF THE UNITED STATES SCHEDULE 6. - METALS AND METAL PRODUCTS 252 Part 1 - Metal-Bearing Ores and Other Metal-Bearing Schedule 6 headnotes: Materials 1, This schedule does not cover — Part 2 Metals, Their Alloys, and Their Basic Shapes and Forms (II chemical elements (except thorium and uranium) and isotopes which are usefully radioactive (see A. Precious Metals part I3B of schedule 4); B. Iron or Steel (II) the alkali metals. I.e., cesium, lithium, potas­ C. Copper sium, rubidium, and sodium (see part 2A of sched­ D. Aluminum ule 4); or E. Nickel (lii) certain articles and parts thereof, of metal, F. Tin provided for in schedule 7 and elsewhere. G. Lead 2. For the purposes of the tariff schedules, unless the H. Zinc context requires otherwise — J. Beryllium, Columbium, Germanium, Hafnium, (a) the term "precious metal" embraces gold, silver, Indium, Magnesium, Molybdenum, Rhenium, platinum and other metals of the platinum group (iridium, Tantalum, Titanium, Tungsten, Uranium, osmium, palladium, rhodium, and ruthenium), and precious- and Zirconium metaI a Iloys; K, Other Base Metals (b) the term "base metal" embraces aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, columbium, copper, gallium, germanium, Part 3 Metal Products hafnium, indium, iron, lead, magnesium, manganese, mercury, A. Metallic Containers molybdenum, nickel, rhenium, the rare-earth metals (Including B. Wire Cordage; Wire Screen, Netting and scandium and yttrium), selenium, silicon, strontium, tantalum, Fencing; Bale Ties tellurium, thallium, thorium, tin, titanium, tungsten, urani­ C. Metal Leaf and FoU; Metallics um, vanadium, zinc, and zirconium, and base-metal alloys; D, Nails, Screws, Bolts, and Other Fasteners; (c) the term "meta I" embraces precious metals, base Locks, Builders' Hardware; Furniture, metals, and their alloys; and Luggage, and Saddlery Hardware (d) in determining which of two or more equally specific provisions for articles "of iron or steel", "of copper", E.
    [Show full text]
  • Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: a Review
    antibiotics Review Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review Masaya Shimabukuro Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; [email protected]; Tel.: +81-92-642-6346 Received: 3 October 2020; Accepted: 19 October 2020; Published: 20 October 2020 Abstract: Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties. Keywords: titanium; biofilm; infection; micro-arc oxidation; silver; copper; zinc; antibacterial properties; coating; implant 1.
    [Show full text]
  • Rhodium Products
    Rhodium products Rhodium is one of the of six elements in the platinum group, which consists of platinum, palladium, rhodium, osmium, iridium and ruthenium. Often found with deposits of platinum and commonly obtained from the mining and refining of platinum, it is considered to be the rarest and most valuable precious metal, more valuable than gold or silver. Rhodium is a silver-white metallic element with high melting and boiling points. It is highly reflective and resistant to corrosion and oxidation, which is why it is also classified as a noble metal. It was discovered in 1803 by English chemist William Hyde Wollaston shortly after his discovery of palladium. Wollaston extracted rhodium from a piece of platinum ore that he had obtained from South America. Rhodium was named for the rose-red color of its salts, after the Greek word “rhodon” which means rose. Rarely used by itself, rhodium metal is almost always used as an alloy. We offer a broad, diverse catalog of rhodium products which are also available in bulk quantities and pack sizes that can be customized to your requirements. Application highlights: The Alfa Aesar™ portfolio of rhodium products can be used in a wide range of applications, from chemistry research to manufacturing and industry, from emission control and electrical applications to jewelry. Rhodium in chemistry Rhodium is used in research and industrial laboratories primarily as a catalyst. It is preferable to the other platinum group catalysts in the reduction of nitrogen oxides to nitrogen and oxygen. Rhodium is also used to catalyze the reduction of benzene to cyclohexane as well as the addition of hydrosilanes to double bonds, an important step in the manufacture of certain silicone rubbers.
    [Show full text]
  • 1 an Investigation of the Mechanical and Physical Properties of Copper
    An Investigation of the Mechanical and Physical Properties of Copper-Silver Alloys and the Use of These Alloys in Pre-Columbian America by Shannon L. Taylor Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the Massachusetts Institute of Technology June 2013 © Massachusetts Institute of Technology. All rights reserved. Signature of Author: ____________________________________________________________ Department of Materials Science and Engineering May 3, 2013 Certified by: ___________________________________________________________________ Heather Lechtman Professor of Archaeology and Ancient Technology Thesis Supervisor Accepted by: __________________________________________________________________ Jeffrey Grossman Carl Richard Soderberg Associate Professor of Power Engineering Chair, Undergraduate Committee 1 An Investigation of the Mechanical and Physical Properties of Copper-Silver Alloys and the Use of These Alloys in Pre-Columbian America by Shannon L. Taylor Submitted to the Department of Materials Science and Engineering on May 3, 2013 in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Archaeology and Materials ABSTRACT In both the Andean zone of South America and in Mesoamerica, copper-silver alloys were important in the production of thin, silver-colored sheet metal artifacts. This thesis examines the mechanical and physical properties of the copper-silver alloy system that are important to understanding why copper-silver alloys became central to the metallurgies that developed among prehistoric societies of the Andean zone and Western Mexico. These properties include their range of malleability, the microstructures behind their toughness, and the recrystallization and annealing behaviors that led to their development of silver-enriched surfaces. To determine these properties, a series of cold rolling, cold hammering, and annealing experiments were performed on five Cu-Ag alloys and pure copper.
    [Show full text]
  • Effects of Surface Treatments on Stainless Steel 316 Exposed to Potable Water Containing Silver Disinfectant
    49th International Conference on Environmental Systems ICES-2019-273 7-11 July 2019, Boston, Massachusetts Effects of Surface Treatments on Stainless Steel 316 Exposed to Potable Water Containing Silver Disinfectant Wenyan Li1, Jerry W. Buhrow2, Angie M. Diaz3, Tesia D. Irwin4, and Luz M. Calle5 NASA, Kennedy Space Center, FL, 32899 Michael R. Callahan 6 NASA Johnson Space Center, Houston, TX, 77058 Silver has been selected as the forward disinfectant candidate for potable water systems in future space exploration missions. To develop a reliable antibacterial system that requires minimal maintenance, it is necessary to address relevant challenges to preclude problems for future missions. One such challenge is silver depletion in potable water systems. When in contact with various materials, silver ions can be easily reduced to silver metal or form insoluble compounds. The same chemical properties that make ionic silver a powerful antimicrobial agent also result in its quick inactivation or depletion in various environments. Different metal surface treatments, such as thermal oxidation and electropolishing, have been investigated for their effectiveness in reducing silver disinfectant depletion in potable water. However, their effects on the metal surface microstructure and chemical resistance have not often been included in the studies. This paper reports the effects of surface treatments on stainless steel 316 (SS316) exposed to potable water containing silver ion as a disinfectant. Early experimental results showed that thermal oxidation, when compared with electropolishing, resulted in a thicker oxide layer but compromised the corrosion resistance of SS316. Nomenclature AgF = silver fluoride DI = deionized I2 = iodine ISS = International Space Station KSC = Kennedy Space Center NASA = National Aeronautics and Space Administration SEM = scanning electron microscopy SS = stainless steel S/V = surface to volume XPS = X-ray photon spectroscopy I.
    [Show full text]
  • Understanding the Astrophysical Origin of Silver, Palladium and Other Neutron-Capture Elements
    Understanding the astrophysical origin of silver, palladium and other neutron-capture elements Camilla Juul Hansen M¨unchen 2010 Understanding the astrophysical origin of silver, palladium and other neutron-capture elements Camilla Juul Hansen Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Camilla Juul Hansen aus Lillehammer, Norwegen M¨unchen, den 20/12/2010 Erstgutachter: Achim Weiss Zweitgutachter: Joseph Mohr Tag der m¨undlichen Pr¨ufung: 22 M¨arz 2011 Contents 1 Introduction 1 1.1 Evolutionoftheformationprocesses . ..... 2 1.2 Neutron-capture processes: The historical perspective............ 5 1.3 Features and description of the neutron-capture processes.......... 7 1.4 Whatisknownfromobservations? . .. 9 1.5 Why study palladium and silver? . .. 15 1.6 Abiggerpicture................................. 16 2 Data - Sample and Data Reduction 19 2.1 Compositionofthesample . 19 2.1.1 Samplebiases .............................. 21 2.2 Datareduction ................................. 22 2.2.1 Fromrawtoreducedspectra. 22 2.2.2 IRAF versus UVES pipeline . 25 2.3 Merging ..................................... 26 2.3.1 Radialvelocityshift .......................... 27 3 Stellar Parameters 29 3.1 Methods for determining stellar parameters . ........ 29 3.2 Temperature................................... 30 3.2.1 Comparingtemperaturescales . 32 3.3 Gravity ..................................... 34 3.4 Metallicity.................................... 35 3.5 Microturbulence velocity, ξ ..........................
    [Show full text]
  • The Care and Preservation of Historical Silver by CLARA DECK, CONSERVATOR REVISIONS by LOUISE BECK, CONSERVATOR
    The Care and Preservation of Historical Silver BY CLARA DECK, CONSERVATOR REVISIONS BY LOUISE BECK, CONSERVATOR Introduction Historical silver can be maintained for years of use and enjoyment provided that some basic care and attention is given to their preservation. The conservation staff at The Henry Ford have compiled the information in this fact sheet to help individuals care for their objects and collections. The first step in the care of all collections is to understand and minimize or eliminate conditions that can cause damage. The second step is to follow basic guidelines for care, handling and cleaning. Most people know that silver is a white, lustrous metal. Pure or “fine” silver is called “Sterling” if it is made up of no less than 925 parts silver to 75 parts alloy. Sterling will thus often have ‘.925’ stamped somewhere on it, as an identifier. Silver objects, especially coins and jewelry, contain copper as an alloying metal for added hardness. The copper may corrode to form dark brown or green deposits on the surface of the metal. Silver is usually easy to differentiate from lead or pewter, which are generally dark gray and not very shiny. Silver is often plated (deposited) onto other metallic alloys, almost always with an intermediate layer of copper in between. The earliest plating process, “Sheffield Plate” was developed in England in 1742. By the mid-19th century, the process was largely replaced by electroplating (which used less silver). The base metal in plated artifacts may consist of any of the following metals or alloys: copper, brass, “German silver” or “nickel silver” (50% copper, 30% nickel, 20% zinc), “Brittania metal” (97% tin, 7% antimony, 2% copper), or a “base” silver containing a high percentage of copper.
    [Show full text]
  • Platinum, Silver- Platinum, and Palladium Prints
    Noble Metals for the Early Modern Era: Platinum, Silver- Platinum, and Palladium Prints Constance Mc Cabe Histories of photography usually emphasize the photogra- phers’ command of the camera and the resulting pictures while offering little insight into the extensive chemical and technical artistry performed in studios and darkrooms. Research into the materials and methods behind photo- graphic prints, however, can shed light on the aesthetic goals of the photographers and help to determine which properties are the result of artistic decisions and which might be the natural effects of aging. By studying the array of platinum, silver- platinum, and palladium prints in the Thomas Walther Collection, we are given an opportunity to appreciate how photographers in the early twentieth cen- tury manipulated materials and chemicals to achieve a quasi-modern aesthetic. The aesthetic benchmark for many photographers at the dawn of the twentieth century was the platinum print, extolled for its unparalleled artistic qualities and perma- nence. Alfred Stieglitz (1864–​­1946) and Clarence H. White (1871–​­1925), both highly influential photographers and lead- ers of Pictorialism, a movement championing photography as fine art, praised platinum as the ideal photographic medium for their exhibition prints. Their disciples contin- ued to test the medium for new and unusual effects, exploiting such curiosities as multiple exposures, tone reversal, and solarization, and exploring unconventional compositional elements and abstraction. Highly attuned to the technical craft of their work, they investigated myriad products and chemical modifications to achieve their artistic fig. 1 Alfred Stieglitz. From the Back Window at “291”. April 3, 1915. Platinum print, objectives.
    [Show full text]
  • Rhodium Plating
    Rhodium Plating Dr. Ronald J. Morrissey Applications that deposits from the phosphate system are somewhat whiter, Rhodium is one of the whitest of metals, and this, together and mixed phosphate-sulfate systems are sometimes used. with its hardness and resistance to wear and tarnishing, have Insoluble hydrous oxides of rhodium can form at quite low established it as a premier finish for jewelry and decorative pH values. In order to avoid this, it is important to maintain work of all types. Its stable contact resistance and high the acidity of rhodium plating solution. All other things being melting point have also made it useful in electrical and equal, this is more easily accomplished in the sulfate than in electronic applications, notably in reed blades, in which its the phosphate system. resistance to arcing is particularly advantageous. Rhodium For decorative applications, rhodium plating solutions is, however, also the most expensive of the precious metals. rarely contain more than about 2 g/L rhodium, together with In recent years, its use has, with few exceptions, been about 20 mL/L of concentrated sulfuric acid. For heavier restricted to very thin deposits, usually over other white deposits, the rhodium content is increased to about 4-10 g/L, metals such as nickel, silver or, in the case of reed blades, together with about 20-50 mL/L sulfuric acid. In either case, ruthenium. plating is carried out at about 1-5 A/dm2 at 40-45 °C. Proprietary stress-relieving agents are available, but in any Processes event, it is difficult to plate rhodium in a crack-free condition Although rhodium can be evaporated under vacuum, in from aqueous solution at thicknesses much above 2 to 2.5 practice it is almost always electrodeposited.
    [Show full text]