A Role for Syntaxin 3 in the Secretion of IL-6 from Dendritic Cells Following Activation of Toll-Like Receptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Requirement of NPHP1 for Compartmentalized Protein Localization During
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427412; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Differential requirement of NPHP1 for compartmentalized protein localization during 2 photoreceptor outer segment development and maintenance 3 4 Poppy Dattaa,b,#, J. Thomas Cribbsa,b,#, and Seongjin Seoa,b,* 5 6 aDepartment of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa 7 City, IA 52242, U.S.A. 8 bInstitute for Vision Research, The University of Iowa, Iowa City, IA 52242, U.S.A. 9 10 11 #Equally contributed 12 *To whom correspondence should be addressed: 13 Seongjin Seo, PhD 14 Department of Ophthalmology and Visual Sciences 15 University of Iowa College of Medicine 16 375 Newton Rd 17 3181D MERF 18 Iowa City, IA 52242, U.S.A. 19 Phone: 1-319-353-4477 20 Email: [email protected] 21 22 Running title: Roles of NPHP1 in photoreceptors 23 Keywords: cilia; ciliary gate; compartmentalization; inherited retinal degeneration; nonsense-associated altered 24 splicing; protein confinement; transition zone 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427412; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Genome-Wide Rnai Screens Identify Genes Required for Ricin and PE Intoxications
Developmental Cell Article Genome-Wide RNAi Screens Identify Genes Required for Ricin and PE Intoxications Dimitri Moreau,1 Pankaj Kumar,1 Shyi Chyi Wang,1 Alexandre Chaumet,1 Shin Yi Chew,1 He´ le` ne Chevalley,1 and Fre´ de´ ric Bard1,* 1Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore *Correspondence: [email protected] DOI 10.1016/j.devcel.2011.06.014 SUMMARY In the lumen of the ER, these toxins are thought to interact with elements of the ER-associated degradation (ERAD) pathway, Protein toxins such as Ricin and Pseudomonas which targets misfolded proteins in the ER for degradation. exotoxin (PE) pose major public health challenges. This interaction is proposed to allow translocation to the cytosol Both toxins depend on host cell machinery for inter- without resulting in toxin degradation (Johannes and Ro¨ mer, nalization, retrograde trafficking from endosomes 2010). to the ER, and translocation to cytosol. Although Obviously, this complex set of membrane-trafficking and both toxins follow a similar intracellular route, it is membrane-translocation events involves many host proteins, some of which have already been described (Johannes and unknown how much they rely on the same genes. Ro¨ mer, 2010; Sandvig et al., 2010). Altering the function of these Here we conducted two genome-wide RNAi screens host proteins could in theory provide a toxin antidote. identifying genes required for intoxication and Consistently, inhibition of retrograde traffic by drugs such as demonstrating that requirements are strikingly Brefeldin A (Sandvig et al., 1991)(Yoshida et al., 1991) or Golgi- different between PE and Ricin, with only 13% over- cide A (Sa´ enz et al., 2009) and Retro-1 and 2 (Stechmann et al., lap. -
Defining the Kv2.1–Syntaxin Molecular Interaction Identifies a First-In-Class Small Molecule Neuroprotectant
Defining the Kv2.1–syntaxin molecular interaction identifies a first-in-class small molecule neuroprotectant Chung-Yang Yeha,b,1, Zhaofeng Yec,d,1, Aubin Moutale, Shivani Gaura,b, Amanda M. Hentonf,g, Stylianos Kouvarosf,g, Jami L. Salomana, Karen A. Hartnett-Scotta,b, Thanos Tzounopoulosa,f,g, Rajesh Khannae, Elias Aizenmana,b,g,2, and Carlos J. Camachoc,2 aDepartment of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; bPittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; cDepartment of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; dSchool of Medicine, Tsinghua University, Beijing 100871, China; eDepartment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724; fDepartment of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and gPittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Lily Yeh Jan, University of California, San Francisco, CA, and approved June 19, 2019 (received for review February 27, 2019) + The neuronal cell death-promoting loss of cytoplasmic K follow- (13). The Kv2.1-dependent cell death pathway is normally initiated ing injury is mediated by an increase in Kv2.1 potassium channels in by the oxidative liberation of zinc from intracellular metal-binding the plasma membrane. This phenomenon relies on Kv2.1 binding to proteins (14), leading to the sequential phosphorylation of syntaxin 1A via 9 amino acids within the channel intrinsically disor- Kv2.1 residues Y124 and S800 by Src and p38 kinases, respectively dered C terminus. Preventing this interaction with a cell and blood- (15–17). -
Regular Article
From www.bloodjournal.org by guest on April 6, 2015. For personal use only. Regular Article IMMUNOBIOLOGY Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion Waldo A. Spessott,1 Maria L. Sanmillan,1 Margaret E. McCormick,1 Nishant Patel,2 Joyce Villanueva,3 Kejian Zhang,4 Kim E. Nichols,5 and Claudio G. Giraudo1 1Department of Pathology and Laboratory Medicine, and 2Division of Oncology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA; 3Division of Bone Marrow Transplant and Immune Deficiency, and 4Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; and 5Division of Cancer Predisposition, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN Key Points Familial hemophagocytic lymphohistiocytosis (F-HLH) and Griscelli syndrome type 2 (GS) are life-threatening immunodeficiencies characterized by impaired cytotoxic T lymphocyte • Monoallelic STXBP2 mutations (CTL) and natural killer (NK) cell lytic activity. In the majority of cases, these disorders are affecting codon 65 impair caused by biallelic inactivating germline mutations in genes such as RAB27A (GS) and PRF1, lymphocyte cytotoxicity and UNC13D, STX11,andSTXBP2 (F-HLH). Although monoallelic (ie, heterozygous) mutations contribute to hemophagocytic have been identified in certain patients, the clinical significance and molecular mechanisms lymphohistiocytosis. by which these mutations influence CTL and NK cell function remain poorly understood. • Munc18-2R65Q/W mutant Here, we characterize 2 novel monoallelic hemophagocytic lymphohistiocytosis (HLH)- associated mutations affecting codon 65 of STXPB2, the gene encoding Munc18-2, a member proteins function in a dominant- of the SEC/MUNC18 family. -
Clinical Spectrum Ofstx1b-Related Epileptic Disorders
ARTICLE OPEN ACCESS Clinical spectrum of STX1B-related epileptic disorders Stefan Wolking, MD, Patrick May, PhD, Davide Mei, PhD, Rikke S. Møller, PhD, Simona Balestrini, PhD, Correspondence Katherine L. Helbig, MS, Cecilia Desmettre Altuzarra, MD, Nicolas Chatron, PhD, Charu Kaiwar, MD, Dr. Lerche Katharina Stohr,¨ MD, Peter Widdess-Walsh, MB, Bryce A. Mendelsohn, PhD, Adam Numis, MD, holger.lerche@ Maria R. Cilio, PhD, Wim Van Paesschen, MD, Lene L. Svendsen, MD, Stephanie Oates, MD, Elaine Hughes, MD, uni-tuebingen.de Sushma Goyal, MD, Kathleen Brown, MS, Margarita Sifuentes Saenz, MD, Thomas Dorn, MD, Hiltrud Muhle, MD, Alistair T. Pagnamenta, PhD, Dimitris V. Vavoulis, PhD, Samantha J.L. Knight, PhD, Jenny C. Taylor, PhD, Maria Paola Canevini, MD, Francesca Darra, MD, Ralitza H. Gavrilova, MD, Zoe¨ Powis, MS, Shan Tang, PhD, Justus Marquetand, MD, Martin Armstrong, PhD, Duncan McHale, PhD, Eric W. Klee, PhD, Gerhard J. Kluger, MD, Daniel H. Lowenstein, MD, Sarah Weckhuysen, PhD, Deb K. Pal, PhD, Ingo Helbig, MD, Renzo Guerrini, MD, Rhys H. Thomas, PhD, Mark I. Rees, PhD, Gaetan Lesca, PhD, Sanjay M. Sisodiya, PhD, Yvonne G. Weber, MD, Dennis Lal, PhD, Carla Marini, PhD, Holger Lerche, MD, and Julian Schubert, PhD Neurology® 2019;92:e1238-e1249. doi:10.1212/WNL.0000000000007089 Abstract Objective The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease- related variants. Methods We used next-generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. -
Fluorescence Lifetime Imaging Microscopy Reveals Rerouting Of
RESEARCH ARTICLE Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation Danie¨ lle Rianne Jose´ Verboogen, Natalia Gonza´ lez Mancha, Martin ter Beest, Geert van den Bogaart* Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands Abstract SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Fo¨ rster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood- derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution. DOI: 10.7554/eLife.23525.001 *For correspondence: geert. [email protected] Introduction Competing interests: The One of the central paradigms in cell biology is that all intracellular membrane fusion, except for authors declare that no mitochondrial fusion, is catalyzed by soluble NSF (N-ethylmaleimide-sensitive fusion protein) attach- competing interests exist. ment protein receptor (SNARE) proteins (Hong, 2005; Jahn and Scheller, 2006). -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
Syntaxin 2 Acts As Inhibitory SNARE for Insulin Granule Exocytosis
Page 1 of 37 Diabetes Syntaxin 2 Acts as Inhibitory SNARE for Insulin Granule Exocytosis Dan Zhu1,4, Li Xie1,4, Youhou Kang1,4, Subhankar Dolai1,4, Jakob Bondo Hansen1, Tairan Qin1, Huanli Xie1, Tao Liang1, Deborah C Rubin3, Lucy Osborne1,2, Herbert Y. Gaisano1 Affiliations: 1Departments of Medicine and 2Molecular Genetics, University of Toronto, Toronto, ON, Canada 3Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA 4Equal contributors Running Title: Syntaxin 2 deletion increases secretion Correspondence to: Herbert Y. Gaisano University of Toronto, 1 King’s College Circle, Rm. 7368 Toronto, ON, Canada, M5S 1A8, Tel.: (416)978-1526 Email: [email protected] 1 Diabetes Publish Ahead of Print, published online January 23, 2017 Diabetes Page 2 of 37 ABSTRACT Of the four syntaxins (Syns) specialized for exocytosis, syntaxin-2 is the least understood. Here, we employed syntaxin-2/epimorphin knockout (KO) mice to examine the role of syntaxin-2 in insulin secretory granule (SG) exocytosis. Unexpectedly, syntaxin-2 KO mice exhibited paradoxical superior glucose homeostasis resulting from an enhanced insulin secretion. This was confirmed in vitro by pancreatic islet perifusion showing an amplified biphasic glucose- stimulated insulin secretion (GSIS) arising from an increase in size of the readily-releasable pool of insulin SGs and enhanced SG pool refilling. The increase in insulin exocytosis was attributed mainly from an enhanced recruitment of the larger pool of newcomer SGs that undergoes no residence time on plasma membrane before fusion, and to lesser extent also the predocked SGs. Consistently, syntaxin-2 depletion resulted in stimulation-induced increase in abundance of exocytotic complexes we previous demonstrated to mediate the fusion of newcomer SGs (Syn- 3/VAMP8/SNAP25/Munc18b) and predocked SGs (Syn-1A/VAMP2/SNAP25/Muncn18a). -
Syntaxin Binding Mechanism and Disease-Causing Mutations In
Syntaxin binding mechanism and disease-causing PNAS PLUS mutations in Munc18-2 Yvonne Hackmanna, Stephen C. Grahama,1,2, Stephan Ehlb, Stefan Höningc, Kai Lehmbergd, Maurizio Aricòe, David J. Owena, and Gillian M. Griffithsa,2 aCambridge Institute for Medical Research, University of Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom; bCentre of Chronic Immunodeficiency, 79106 Freiburg, Germany; cInstitute for Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; dDepartment of Paediatric Haematology and Oncology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; and ePediatric Hematology Oncology Network, Istituto Toscana Tumori, 50139 Florence, Italy Edited* by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved October 11, 2013 (received for review July 18, 2013) Mutations in either syntaxin 11 (Stx11) or Munc18-2 abolish Munc18-2 belongs to the Sec1/Munc18-like (SM) protein cytotoxic T lymphocytes (CTL) and natural killer cell (NK) cytotox- family, whose members are all ∼600 residues long and are in- icity, and give rise to familial hemophagocytic lymphohistiocytosis volved in regulation of SNARE-mediated membrane fusion (FHL4 or FHL5, respectively). Although Munc18-2 is known to events (9, 10). The two closest homologs of Munc18-2 are interact with Stx11, little is known about the molecular mecha- Munc18-1, which is crucial for neurotransmitter secretion in nisms governing the specificity of this interaction or how in vitro neurons (11, 12), and Munc18-3, which is more widely expressed IL-2 activation leads to compensation of CTL and NK cytotoxicity. and is involved in Glut4 translocation (13). -
Syntaxin Binding Mechanism and Disease-Causing Mutations in Munc18-2
Syntaxin binding mechanism and disease-causing mutations in Munc18-2 Yvonne Hackmanna, Stephen C. Grahama,1,2, Stephan Ehlb, Stefan Höningc, Kai Lehmbergd, Maurizio Aricòe, David J. Owena, and Gillian M. Griffithsa,2 aCambridge Institute for Medical Research, University of Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom; bCentre of Chronic Immunodeficiency, 79106 Freiburg, Germany; cInstitute for Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; dDepartment of Paediatric Haematology and Oncology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; and ePediatric Hematology Oncology Network, Istituto Toscana Tumori, 50139 Florence, Italy Edited* by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved October 11, 2013 (received for review July 18, 2013) Mutations in either syntaxin 11 (Stx11) or Munc18-2 abolish Munc18-2 belongs to the Sec1/Munc18-like (SM) protein cytotoxic T lymphocytes (CTL) and natural killer cell (NK) cytotox- family, whose members are all ∼600 residues long and are in- icity, and give rise to familial hemophagocytic lymphohistiocytosis volved in regulation of SNARE-mediated membrane fusion (FHL4 or FHL5, respectively). Although Munc18-2 is known to events (9, 10). The two closest homologs of Munc18-2 are interact with Stx11, little is known about the molecular mecha- Munc18-1, which is crucial for neurotransmitter secretion in nisms governing the specificity of this interaction or how in vitro neurons (11, 12), and Munc18-3, which is more widely expressed IL-2 activation leads to compensation of CTL and NK cytotoxicity. and is involved in Glut4 translocation (13). Stx11 is a member To understand how mutations in Munc18-2 give rise to disease, we of the syntaxin-family of SNARE proteins, comprised of an have solved the structure of human Munc18-2 at 2.6 Å resolution N-terminal peptide (N peptide) followed by an autonomously and mapped 18 point mutations. -
Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins Via Tubulovesicular Recycling Endosomes Rytis Prekeris,* Judith Klumperman,‡ Yu A
Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins via Tubulovesicular Recycling Endosomes Rytis Prekeris,* Judith Klumperman,‡ Yu A. Chen,* and Richard H. Scheller* *Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428; and ‡Medical School, University of Utrecht, Institute for Biomembranes, 3584CX Utrecht, The Netherlands Abstract. Endocytosis-mediated recycling of plasma oles, where it is often found in clathrin-coated mem- membrane is a critical vesicle trafficking step important brane areas. Furthermore, anti-syntaxin 13 antibody in- in diverse biological processes. The membrane traffick- hibits transferrin receptor recycling in permeabilized ing decisions and sorting events take place in a series of PC12 cells. Immunoprecipitation of syntaxin 13 re- heterogeneous and highly dynamic organelles, the en- vealed that, in Triton X-100 extracts, syntaxin 13 is dosomes. Syntaxin 13, a recently discovered member of present in a complex(es) comprised of bSNAP, VAMP the syntaxin family, has been suggested to play a role in 2/3, and SNAP-25. This complex(es) binds exogenously mediating endosomal trafficking. To better understand added aSNAP and NSF and dissociates in the presence the function of syntaxin 13 we examined its intracellu- of ATP, but not ATPgS. These results support a role lar distribution in nonpolarized cells. By confocal im- for syntaxin 13 in membrane fusion events during the munofluorescence and electron microscopy, syntaxin recycling of plasma membrane proteins. 13 is primarily found in tubular early and recycling en- dosomes, where it colocalizes with transferrin receptor. Key words: vesicular transport • endosomes • protein Additional labeling is also present in endosomal vacu- recycling • membrane trafficking • syntaxin iological membranes are used to establish func- dermal growth factor (38, 39, 59) become highly concen- tional compartments in eucaryotic organisms. -
Mapping Transmembrane Binding Partners for E-Cadherin Ectodomains
SUPPLEMENTARY INFORMATION TITLE: Mapping transmembrane binding partners for E-cadherin ectodomains. AUTHORS: Omer Shafraz 1, Bin Xie 2, Soichiro Yamada 1, Sanjeevi Sivasankar 1, 2, * AFFILIATION: 1 Department of Biomedical Engineering, 2 Biophysics Graduate Group, University of California, Davis, CA 95616. *CORRESPONDING AUTHOR: Sanjeevi Sivasankar, Tel: (530)-754-0840, Email: [email protected] Figure S1: Western blots a. EC-BioID, WT and Ecad-KO cell lysates stained for Ecad and tubulin. b. HRP-streptavidin staining of biotinylated proteins eluted from streptavidin coated magnetic beads incubated with cell lysates of EC-BioID with (+) and without (-) exogenous biotin. c. C-BioID, WT and Ecad-KO cell lysates stained for Ecad and tubulin. d. HRP-streptavidin staining of biotinylated proteins eluted from streptavidin coated magnetic beads incubated with cell lysates of C-BioID with (+) and without (-) exogenous biotin. (+) Biotin (-) Biotin Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4 Percent Percent Percent Percent Percent Percent Percent Percent Gene ID Coverage Coverage Coverage Coverage Coverage Coverage Coverage Coverage CDH1 29.6 31.4 41.1 36.5 10.8 6.7 28.8 29.1 DSG2 26 14.6 45 37 0.8 1.9 1.6 18.7 CXADR 30.2 26.2 32.7 27.1 0.0 0.0 0.0 6.9 EFNB1 24.3 30.6 24 30.3 0.0 0.0 0.0 0.0 ITGA2 16.5 22.2 30.1 33.4 1.1 1.1 5.2 7.2 CDH3 21.8 9.7 20.6 25.3 1.3 1.3 0.0 0.0 ITGB1 11.8 16.7 23.9 20.3 0.0 2.9 8.5 5.8 DSC3 9.7 7.5 11.5 13.3 0.0 0.0 2.6 0.0 EPHA2 23.2 31.6 31.6 30.5 0.8 0.0 0.0 5.7 ITGB4 21.8 27.8 33.1 30.7 0.0 1.2 3.9 4.4 ITGB3 23.5 22.2 26.8 24.7 0.0 0.0 5.2 9.1 CDH6 22.8 18.1 28.6 24.3 0.0 0.0 0.0 9.1 CDH17 8.8 12.4 20.7 18.4 0.0 0.0 0.0 0.0 ITGB6 12.7 10.4 14 17.1 0.0 0.0 0.0 1.7 EPHB4 11.4 8.1 14.2 16.3 0.0 0.0 0.0 0.0 ITGB8 5 10 15 17.6 0.0 0.0 0.0 0.0 ITGB5 6.2 9.5 15.2 13.8 0.0 0.0 0.0 0.0 EPHB2 8.5 4.8 9.8 12.1 0.0 0.0 0.0 0.0 CDH24 5.9 7.2 8.3 9 0.0 0.0 0.0 0.0 Table S1: EC-BioID transmembrane protein hits.