Comparing M3g and Jsr-239 for 3D Games Programming

Total Page:16

File Type:pdf, Size:1020Kb

Comparing M3g and Jsr-239 for 3D Games Programming COMPARING M3G AND JSR-239 FOR 3D GAMES PROGRAMMING Andrew Davison and Sophie Radenahmud Dept. of Computer Engineering Prince of Songkla University Hat Yai, Songkhla 90112, Thailand E-mail: [email protected] KEYWORDS The demands placed on a 3D graphics API are substantial: one major issue is abstraction M3G, JSR-239, OpenGL-ES, Java, 3D, games, versus control – how much of the growing comparison hardware and software complexity should be exposed to the programmer? Another question is how the API should deal with device ABSTRACT variety: should it attempt to fall back on (slow) We compare two graphics APIs for software emulation when necessary hardware programming 3D games in Java on mobile is absent, or should it simply refuse to work? devices: M3G (Mobile 3D Graphics API for Java ME is currently the most popular Java, JSR-184) and JSR-239 (a Java binding programming language for mobiles (it has for OpenGL ES 1.x). We have developed a been estimated that 1200 million phones were series of casual games (a puzzle game, a running Java in 2006 (Evans et al. 2006)), so simple FPS, a strategy game, and others) using how should a 3D API be integrated with Java, the versions of M3G and JSR-239 available in and with its myriad extensions, especially Sun's Wireless Toolkit 2.5.1, and use them to those related to graphics? compare the APIs in three areas: suitability for casual games programming, ease of We consider three broad API issues in this performance tweaking, and API and Java paper: suitability for casual games integration. programming, ease of performance tweaking, and how the API and Java are combined. We do this by referring to our experience in INTRODUCTION developing a range of casual games using M3G (Mobile 3D Graphics API for Java, JSR- Mobile gaming is in the midst of a minor 184) and JSR-239 (a Java binding for OpenGL revolution, driven by advances in graphics ES 1.x) in Sun's Wireless Toolkit 2.5.1. We processing (FPUs, GPUs), new interfaces also discuss what the future holds for M3G and (high definition video, touch, spatial sensors), JSR-239 (i.e. in M3G 2.0 and OpenGL ES and improved networking (GPS, faster 2.0). wireless). These improvements are encouraging new forms of gaming to appear, relying on persistent network connectivity, CASUAL GAMES mobility, parameters derived from the physical environment, and the episodic nature of Casual gaming is ideally suited to mobile communication. 3D graphics are closely linked devices: simple gameplay, action in short to these themes as a means of representing and bursts, no long-term time commitment or enhancing the user's interface to the 3D world. special skills required, and comparatively cheap game production. Casual gaming is also But there are problems: device fragmentation appealing to people outside the usual gamer is accelerating, with an ever widening range of demographic, a potentially massive audience. CPU speeds, memory sizes, screen resolutions, color depths, power consumption, non- Our examples include a puzzle game standard user interfaces, audio and video types, (CubeFinder), a simple FPS involving and variations in hardware support for floating penguins, a strategy game (Tic-Tac-Toe), point numbers and advanced graphic written in both M3G 1.1 and JSR-239. We processing (such as shaders). have also implemented a number of smaller MIDlets to test different aspects of the APIs: a model viewer, an animated scene, a particles demo, and examples using skinning and technique for grouping instructions for shape morphing. Figure 1 shows screenshots from creation. In OpenGL ES, the programmer some of the games and demos. defines arrays for a shape’s vertices, normals, colors, and texture coordinates (Astle and Durnil 2004). Another significant loss are the GLU and GLUT utility libraries. GLU includes convenience functions for such tasks as positioning the camera, setting up the viewing volume, generating basic shapes, and texture mipmapping. GLUT is mainly utilized in OpenGL applications for its I/O support; in JSR-239 that is handled by Java ME’s GameCanvas. OpenGL ES differs from OpenGL in its support for fixed-point numbers in addition to floats, to better match the limited hardware of smaller devices. Its 16.16 fixed-point data type utilizes the first 16 bits for a signed two’s compliment integer, and the other 16 bits for a fractional part. A shape defined using fixed- point vertices should render much more quickly than one employing floats. OpenGL ES only has primitives for creating shapes out of points, lines, or triangles; polygons and quadrilaterals (quads) primitives are missing. OpenGL ES is a ‘moving’ specification, with Figure 1. Casual Games and Demos three incarnations at the moment. OpenGL ES 1.0 is based upon OpenGL 1.3, OpenGL ES 1.1 is defined relative to OpenGL 1.5, and These M3G and JSR-239 examples can be OpenGL ES 2.0 is derived from the OpenGL found at the first author’s websites: 2.0 specification. http://fivedots.coe.psu.ac.th/~ad/jg/ and http://fivedots.coe.psu.ac.th/~ad/jg2/. OpenGL ES 1.1 includes support for multi- texturing, mipmap generation, and greater These applications were developed by a control over point rendering (useful for particle programmer new to M3G and JSR-239, and systems). OpenGL ES 2.0 is a more radical our comments here are based on his logbook departure, employing a programmable notes. Our intention was to gain the rendering model based around shaders, with perspective of a programmer new to these only floating point operations. The motivation APIs, albeit one with several semesters behind this design is the belief that mobile experience of Java and desktop OpenGL devices will very shortly have the rendering programming. power of today’s desktop and laptop machines (Munshi et al. 2008). AN OVERVIEW OF JSR-239 The GLBenchmark site (http://www.glbenchmark.com/result.jsp) JSR-239 is a Java binding around OpenGL ES includes a long list of OpenGL ES devices (OpenGL for Embedded Systems) which is (including Symbian devices, the PlayStation 3, itself a subset of OpenGL aimed at smaller Nintendo's GameBoy DS, and the iPhone), and devices such as mobile phones, PDAs, and their results against its benchmarking software. games consoles (see As of August 2008, only a few high-end Sony http://jcp.org/en/jsr/detail?id=239 and Ericsson phones support JSR-239 (Hellman http://www.khronos.org/opengles/). It is small 2008). (around 50 KB), and yet its capabilities are very similar to OpenGL’s. The most obvious loss of functionality is probably the OpenGL glBegin()/glEnd() AN OVERVIEW OF M3G SUITABILITY FOR CASUAL GAMES PROGRAMMING M3G (the Mobile 3D Graphics API) was developed as JSR 184 M3G’s scene graph makes programming much (http://www.jcp.org/en/jsr/detail?id=184), and easier for novices (and even for experienced is currently at version 1.1. Version 2.0 is in programmers) because it emphasizes scene development as JSR 297, with the aim of design rather than rendering, by hiding the adding programmable shaders and other underlying graphics pipeline. A scene graph advanced features naturally supports complex graphical elements (http://jcp.org/en/jsr/detail?id=297). such as 3D geometries, the camera, and lighting. M3G provides two ways for developers to draw 3D graphics: immediate mode and At the implementation level, the scene graph retained mode. In immediate mode, commands can be employed to group shapes with are issued directly into the graphics pipeline in common properties, carry out frustum culling, a similar way to OpenGL ES. However, it’s scene management, level of detail selection, most common for programmers to utilize execution culling, and batching of graphics retained mode which employs a scene graph to operations – all optimizations which must be link the geometric objects in the 3D world into coded directly by the programmer in OpenGL a tree structure, and specify the camera, lights, ES. However, it is unclear whether different and background (Höfele 2007). phone manufacturer’s M3G implementations actually support these optimizations (Pulli et At the lowest level, M3G deals with concepts al. 2005). similar to those in OpenGL ES, but the scene graph combines and hides these features inside A very common coding requirement in current higher-level graph nodes. For example, vertex 3D games is to mix-and-match 3D and 2D, and index buffers are combined into Mesh utilizing 2D images for overlays, backgrounds, objects; textures, materials, and other and game characters. The switching between rendering parameters form Appearance modes that this entails can slow down objects, and Group nodes hierarchically rendering by as much as three times (Pulli et combine transformations. al. 2007a), and so it’s necessary to structure code so that mode switching is minimized. In M3G offers keyframe animation that can be M3G, the Appearance node possesses a layers attached to almost any property of any object. mechanism for ordering rendering. For It also supports vertex deformation through instance, it’s easy to specify that overlays are morphing and skinning. There is a compact, drawn first, followed by objects further back in binary M3G file format that can store anything the scene. M3G’s 3D rendering is based on a from complete 3D animations and scene bind-render-release sequence, which makes it graphs down to individual objects or their clear when 3D rendering begins and ends, and components. so makes it much harder to inadvertently mix M3G can be implemented on top of OpenGL 2D and 3D processing. ES (although this is not a requirement), and the The M3G bind-render-release mechanism will resulting relationship between M3G, OpenGL also be useful for integrating 3D rendering ES, and Java ME is represented in Figure 2.
Recommended publications
  • Java (Programming Langua a (Programming Language)
    Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform.
    [Show full text]
  • Real-Time Java for Embedded Devices: the Javamen Project*
    REAL-TIME JAVA FOR EMBEDDED DEVICES: THE JAVAMEN PROJECT* A. Borg, N. Audsley, A. Wellings The University of York, UK ABSTRACT: Hardware Java-specific processors have been shown to provide the performance benefits over their software counterparts that make Java a feasible environment for executing even the most computationally expensive systems. In most cases, the core of these processors is a simple stack machine on which stack operations and logic and arithmetic operations are carried out. More complex bytecodes are implemented either in microcode through a sequence of stack and memory operations or in Java and therefore through a set of bytecodes. This paper investigates the Figure 1: Three alternatives for executing Java code (take from (6)) state-of-the-art in Java processors and identifies two areas of improvement for specialising these processors timeliness as a key issue. The language therefore fails to for real-time applications. This is achieved through a allow more advanced temporal requirements of threads combination of the implementation of real-time Java to be expressed and virtual machine implementations components in hardware and by using application- may behave unpredictably in this context. For example, specific characteristics expressed at the Java level to whereas a basic thread priority can be specified, it is not drive a co-design strategy. An implementation of these required to be observed by a virtual machine and there propositions will provide a flexible Ravenscar- is no guarantee that the highest priority thread will compliant virtual machine that provides better preempt lower priority threads. In order to address this performance while still guaranteeing real-time shortcoming, two competing specifications have been requirements.
    [Show full text]
  • S32 Design Studio for S32 Platform 3.4 Installation Guide
    S32 Design Studio for S32 Platform 3.4 Installation Guide Document Number: S32DSIG Rev. 1.0, 12/2020 Contents System Requirements......................................................................................................................3 Installation prerequisites for Linux platforms.............................................................................5 Downloading S32DS 3.4................................................................................................................12 Downloading the S32DS 3.4 installer................................................................................................................12 Obtaining the activation code.............................................................................................................................12 Installing S32DS 3.4......................................................................................................................14 Debian 8 post-installation settings..................................................................................................................... 20 Installing product updates and packages................................................................................... 23 Installing Synopsys tools...............................................................................................................25 Installing VP Explorer........................................................................................................................................25 Post-installation settings....................................................................................................................................
    [Show full text]
  • Optimizing for Jazelle DBX and Java Hotspot™ Technology Case Study
    Optimizing Midlets for Size and Performance Simon Robinson Innaworks www.innaworks.com TS-5109 2007 JavaOneSM Conference | Session TS-5109 | Goal of This Talk Pushing the size and performance of Java™ Platform, Micro Edition (Java ME platform) applications on today’s handsets 2007 JavaOneSM Conference | Session TS-5109 | 2 Agenda Why size and performance matters Under the bonnet of a Java ME Platform MIDlet Optimization strategy Optimization techniques Optimizing for Jazelle DBX and Java HotSpot™ technology Case study 2007 JavaOneSM Conference | Session TS-5109 | 3 Agenda Why size and performance matters Under the bonnet of a Java ME Platform MIDlet Optimization strategy Optimization techniques Optimizing for Jazelle DBX and Java HotSpot™ technology Case study 2007 JavaOneSM Conference | Session TS-5109 | 4 Why Size and Performance Matters Adoption = Potential market size × How much fun ×Marketing 2007 JavaOneSM Conference | Session TS-5109 | 5 Why Size and Performance Matters Adoption = Potential market size × How much fun ×Marketing Handset coverage matters 2007 JavaOneSM Conference | Session TS-5109 | 6 Why Size and Performance Matters Adoption = Potential market size × How much fun ×Marketing How fun is your game? Perceived quality matters 2007 JavaOneSM Conference | Session TS-5109 | 7 Constraints of Consumer Handsets JAR size Heap memory Nokia S40 v1 (3300, etc.) 64 kB 370 kB Nokia S40 v2 (6230, etc.) 128 kB 512 kB Sharp GX22 100 kB 512 kB DoJa 2.5 (m420i) 30 B 1.5 MB 15% game sales for handsets < 64 kB Java Archive (JAR) file size
    [Show full text]
  • Java in Embedded Linux Systems
    Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal
    [Show full text]
  • Paper Discusses the Advantages and Disadvantages of Each Approach As Well As Specific Experiences of Using Java in a Commercial Tape Drive Project
    Java and Real Time Storage Applications Gary Mueller 195 Garnet St Broomfield, CO 80020-2203 [email protected] Tel: +1-303-465-4279 Janet Borzuchowski Storage Technology Corporation 2270 South 88th Street M. S. 4272 Louisville CO 80028 [email protected] Tel: +1-303-673-8297 Abstract Storage systems have storage devices which run real time embedded software. Most storage devices use C and occasionally C++ to manage and control the storage device. Software for the storage device must meet the time and resource constraints of the storage device. The prevailing wisdom in the embedded world is that objects and in particular Java only work for simple problems and can not handle REAL problems, are too slow and can not handle time critical processing and are too big and can’t fit in memory constrained systems. Even though Java's roots are in the embedded application area, Java is more widely used in the desktop and enterprise environment. Use of Java in embedded real time environments where performance and size constraints rule is much less common. Java vendors offer a dizzying array of options, products and choices for real time storage applications. Four main themes emerge when using Java in a real time storage application; compiling Java, executing Java with a software Java Virtual Machine (JVM), executing Java with a hardware JVM and replacing a real time operating system (RTOS) with a JVM. The desktop and enterprise environment traditionally run Java using a software JVM that has been ported to a particular platform. The JVM runs as a task or process hosted by the platform operating system.
    [Show full text]
  • Dalvik Bytecode Acceleration Using Fetch/Decode Hardware Extension
    Journal of Information Processing Vol.23 No.2 118–130 (Mar. 2015) [DOI: 10.2197/ipsjjip.23.118] Regular Paper Dalvik Bytecode Acceleration Using Fetch/Decode Hardware Extension Surachai Thongkaew1,a) Tsuyoshi Isshiki1,b) Dongju Li1,c) Hiroaki Kunieda1,d) Received: May 6, 2014, Accepted: November 10, 2014 Abstract: The Dalvik virtual machine (Dalvik VM) is an essential piece of software that runs applications on the Android operating system. Android application programs are commonly written in the Java language and compiled to Java bytecode. The Java bytecode is converted to Dalvik bytecode (Dalvik Executable file) which is interpreted by the Dalvik VM on typical Android devices. The significant disadvantage of interpretation is a much slower speed of program execution compared to direct machine code execution on the host CPU. However, there are many tech- niques to improve the performance of Dalvik VM. A typical methodology is just-in-time compilation which converts frequently executed sequences of interpreted instruction to host machine code. Other methodologies include dedi- cated bytecode processors and architectural extension on existing processors. In this paper, we propose an alternative methodology, “Fetch & Decode Hardware Extension,” to improve the performance of Dalvik VM. The Fetch & De- code Hardware Extension is a specially designed hardware component to fetch and decode Dalvik bytecode directly, while the core computations within the virtual registers are done by the optimized Dalvik bytecode software handler. The experimental results show the speed improvements on Arithmetic instructions, loop & conditional instructions and method invocation & return instructions, can be achieved up to 2.4x, 2.7x and 1.8x, respectively.
    [Show full text]
  • Introduction À Java
    Introduction à Java Matthieu Herrb CNRS-LAAS http://homepages.laas.fr/matthieu/cours/java/ Février 2018 Plan 1 Concepts 2 Éléments du langage 3 Classes et objets 4 Packages 2/31 Histoire et motivations Langage développé par James Gosling chez Sun Microsystems (Oracle) à partir de 1990 Pour des environnements embarqués : appareils spécifiques ("Appliances") applications Web Contraintes : indépendant du matériel sécurité 3/31 La machine virtuelle Java Le langage Java utilise une machine virtuelle : le compilateur produit un bytecode ce code est indépendant de l’architecture matérielle sur laquelle il est exécuté la machine virtuelle interprète ce bytecode et le transforme en code machine natif à la volée (Just in time compilation) 4/31 Machines virtuelles Java HotSpot (Oracle JRE/JDK) OpenJDK, IcedTea Implémentations sous licence libre ART Android Runtime (Google) (Dalvik) Jazelle extension du jeu d’instruction de certains processeurs ARMv5 pour exécution directe de byte-code java. ThumbEE généralisation de Jazelle sur processeurs ARMv7. Pas spécifique de Java (supporte aussi C#, Perl, Python) 5/31 Cycle de développement Editeur de texte Compilation Exécution Hello, World Hello.java javac Hello.class java 6/31 Premier programme java /** ** Premier programme java **/ public class Hello { public static void main(String argv[]) { System.out.println("Hello, World!"); } } 7/31 Classes et objets Classe définit un type de données, et des fonctions (méthodes) qui le manipulent. Objet une instance de classe : une variable du type définit par la classe et ses méthodes. Héritage permet de créer des classes qui reprennent les données de la classe parente. Interface définition des prototypes des méthodes d’une classe sans préciser leur implémentation.
    [Show full text]
  • Traffic Congestion Problems Solving
    Using Sense Techniques to Develop a Traffic Control System for Solving Traffic Congestion Problem By Omima Kamal El Din Omer Mohamed B.Sc. Applied Physics and Mathematics Ahlia University, 1999 A Dissertation Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science In Computer Science and Information Department of Computer Engineering Faculty of Engineering and Technology University of Gezira Supervisor: Dr. Suliman Mustafa Mohamed Abbker Co- supervisor:Dr.Khalid Osman Daffallah Ahmed October 2011 Using Sense Techniques to Develop a Traffic Control System for Solving Traffic Congestion Problem By Omima Kamal El Din Omer Mohamed Examination Committee : Name Position Signature Dr. Suliman Mustafa Mohamed Abbker Supervisor …………. Dr. Mahmoud Ali Ahmed Mohamed External Examiner …………. Dr. Mohamed Abdalla Adam Almaleh Internal Examiner …………. Date of Examination: 22 / 10/2011 بسم اهلل الرحمن الرحيم قال تعالى: ِ ِ ِ َّ ِ ِ ِ ) اللّهُ ﻻَ إلَهَ إﻻَّ ُهَو الْ َح ُّي الَْقيُّومُ ﻻَ تَأْ ُخ ُذهُ سنَةٌ َوﻻَ نَ ْومٌ لهُ َما في ال َّسَماَوات َوَما في اﻷَْر ِض َمن ذَا َِّ ِ ِ ِِ ِِ ِ ِ ِ ِ ٍ ِ ِ ِ ِ ِ الذي يَ ْشَف ُع عْن َدهُ إﻻَّ بإ ْذنه يَ ْعلَ ُم َما بَ ْي َن أَيْديه ْم َوَم ا َخْلَفُه ْم َوﻻَ يُحيطُوَن ب َش ْيء ِّم ْن عْلمه إﻻَّ بَما ِ ِ ِ ِ ِ ِ َشاء َوس َع ُكْرسيُّهُ ال َّسَماَوات َواﻷَْر َض َوﻻَ يَ ُؤوُدهُ حْفظُُهَما َوُهَو الَْعل ُّي الَْعظيم( صدق اهلل العظيم سورة البقرة اﻵية )255( i Dedication To the soul of my Father, the first to teach me.
    [Show full text]
  • SUSE® and ARM ARM and 64-Bit ARM Update 2014
    SUSE® and ARM ARM and 64-bit ARM Update 2014 Andrew Wafaa Dirk Müller Principal Engineer openSUSE ARM Team ARM Ltd SUSE [email protected] [email protected] openSUSE® Runs on ... … your laptop … your desktop … your server 2 openSUSE® Runs on ... x86 … your laptop … your desktop x86 x86 … your server 3 Is There More? (open)SUSE® Runs on ... 155,656 x86_64 Cores with 300 TB of RAM 5 SUSE® Runs on ... 9728 ia64 Cores, 30 TB RAM 6 SUSE® Also Runs on ... 2880 Power7 (ppc64) cores 7 SUSE® Runs on Mainframe IBM zSeries 8 Nothing More? openSUSE® on This? 10 What About openSUSE® on This? CuBox-I Cortex A9 (IMX.6), 1GB RAM 11 openSUSE® on “Supercomputers” ;-) • 12 ARM and Servers? 13 Data Centers are Evolving Today Next 3 Years 5 Years + Data center workload characteristics are scaling out Total cost Throughput Workload of optimized ownership 14 ARM and Servers? • 15 What is ARM? What is ARM? • Most popular CPU architecture: ‒ More than 40,000,000,000 CPUs are ARM based ‒ 16,000,000 processors sold every day • “Low power leadership” • Optimized for “System on a Chip” 17 System on Chip 18 System On Chip 19 System On Chip 20 System On Chip 21 System On Chip 22 System On Chip SoC 23 ARM's “Cortex – A“ Series ARMv8 (A57/A53) ARMv7 (A15/A7) ARMv7 (A8/A9) 24 ARM v5/6/7/8 CRYPTO CRYPTO VFPv3/v4 Key feature NEON ARMv7-A Adv SIMD compatibility Thumb-2 A32+T32 ISAs A64 ISA TrustedZone Including: Including: • Scalar FP • Scalar FP SIMD (SD and DP) (SD and DP) • Adv SIMD • Adv SIMD VFPv2 (SP Float) (SP & DP Float) AArch32 AArch64 Jazelle ARMv5 ARMv6 ARMv7-A/R
    [Show full text]
  • JOP: a Java Optimized Processor for Embedded Real-Time Systems
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 JOP: A Java Optimized Processor for Embedded Real-Time Systems Schoeberl, Martin Publication date: 2005 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Schoeberl, M. (2005). JOP: A Java Optimized Processor for Embedded Real-Time Systems. Vienna University of Technology. http://www.jopdesign.com/ General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISSERTATION JOP: A Java Optimized Processor for Embedded Real-Time Systems ausgef¨uhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von AO.UNIV.PROF. DIPL.-ING. DR.TECHN. ANDREAS STEININGER und AO.UNIV.PROF. DIPL.-ING. DR.TECHN. PETER PUSCHNER Inst.-Nr. E182 Institut f¨ur Technische Informatik eingereicht an der Technischen Universit¨at Wien Fakult¨at f¨ur Informatik von DIPL.-ING. MARTIN SCHOBERL¨ Matr.-Nr.
    [Show full text]
  • Instruction Folding in a Hardware-Translation Based Java Virtual Machine
    Instruction Folding in a Hardware-Translation Based Java Virtual Machine Hitoshi Oi The University of Aizu May 4, 2006 Computing Frontiers 2006 Computing Frontiers 2006 May 4, 2006 Outline • Introduction to the Java Virtual Machine and Hardware Translation • Instruction Folding of Java Bytecodes – Implementation in Sun’s Pico Java-II – Removal of Uncommon Cases • Performance Evaluation • Summary and Future Work Hitoshi Oi 2 Computing Frontiers 2006 May 4, 2006 Introduction to the Java Virtual Machine Features of Java°c • Object-Oriented • Network • Security • Platform Independent Java Virtual Machine • Abstract instruction set architecture • Placed between Java applications and underlying platform • Stack-based architecture Hitoshi Oi 3 Computing Frontiers 2006 May 4, 2006 Implementation: Interpretation switch(*bytecode){ case ILOAD: STACK[SP + 1] = STACK[LV + *(bytecode + 1)]; SP = SP + 1; .......... } • A software written in native instructions to the platform reads a Java application and interprets its bytecodes. • Flexible and relatively inexpensive, thus widely adopted (an interpreter is just another program on the platform). • Slow : Checking a flag takes << 1 clock cycle in hardware but several cycles in software. Hitoshi Oi 4 Computing Frontiers 2006 May 4, 2006 Just-In-Time Compilation • Frequently executed methods (functions) are compiled to native instructions. • Works well for server side applications but may not be feasible for client side applications (especially those running on portable devices) because: – Time and power consumption for compilation – Expansion of program size – Client side application may not be repeatedly executed and cannot absorb above compilation overhead. Hitoshi Oi 5 Computing Frontiers 2006 May 4, 2006 Hardware Translation From Instruction • A small translation module Memory between the fetch and decode stages in the pipeline converts simple Java Fetch bytecodes into native instruction sequences.
    [Show full text]