Electrical Engineering Is a Field of Engineering That Generally Deals with the Study and Application of Electricity, Electronics, and Electromagnetism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beng Electronic Engineering (12130008)
University of Pretoria Yearbook 2017 BEng Electronic Engineering (12130008) Duration of study 4 years Total credits 568 Programme information All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows: Learning outcomes of the BEng degree: A graduate in engineering should be able to apply the following skills on an advanced level: a. Engineering problem solving. b. Application of specialist and fundamental knowledge, with specific reference to mathematics, basic sciences and engineering sciences. c. Engineering design and synthesis. d. Investigation, experimentation and data analysis. e. Engineering methods, skills, tools and information technology. f. Professional and general communication. g. Awareness and knowledge of the impact of engineering activity on society and the physical environment. h. Work in teams and in multidisciplinary environments. i. An awareness and ability for lifelong learning. j. An awareness and knowledge of principles of professional ethics and practice. Learning contents of the BEng programmes: Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below. -
Transformers, the Unsung Technology
NUMBERS DON’T LIE_BY VACLAV SMIL OPINION lem. It so puts to shame all mechanical attempts at regulation, it handles with such ease, certainty, and economy vast loads of energy that are instantly given to or taken from it. It is so reliable, strong, and certain. In this mingled steel and copper, extraordinary forces are so nicely balanced as to be almost unsuspected.” The biggest modern incarnations of this enduring design have made it pos- sible to deliver electricity across great distances. In 1890, de Ferranti stepped up from 2.5 kilovolts to 10 kV, enough to bridge 11 kilometers in London. Now ABB, based in Zurich, is working on stepping up to a record-breaking 1,100 kV, to span more than 3,000 km in China. The sheer number of transformers has risen above anything Stanley could have imagined, thanks to the explosion of por- table electronic devices that have to be charged. In 2016, the global output of smartphones alone was in excess of 1.8 bil- TRANSFORMERS, THE lion units, each one supported by a char- ger housing a tiny transformer. You don’t UNSUNG TECHNOLOGY have to take your mobile phone charger apart to see the heart of that small device: A complete iPhone charger teardown is I HAVE ALWAYS DISLIKED EXAGGERATED CLAIMS of imminent posted on the Net, with the transformer scientific and technical breakthroughs, like inexpensive fusion, cheap as its single largest component. supersonic travel, and the terraforming of other planets. But I am fond But many chargers contain even tinier of the simple devices that do so much of the fundamental work of mod- transformers. -
Electrical/Electronic Engineering Curriculum
California State University, Chico Department of Electrical and Computer Engineering 2020/2021 Curriculum BS in Electrical/Electronic Engineering Freshman Year Sophomore Year Junior Year Senior Year Fall Spring Fall Spring Fall Spring Fall Spring Math 120 Math 121 Math 220 Math 260 MATH 350 Concurrent Analytic Analytic EECE 375 Analytic Elementary Intro to Permitted Geometry & Geometry & Fields and Geometry & Differential Probability Calculus Calculus Waves Calculus Equations & Statistics 4 Units (FS) 4 Units (FS) 3 Units (SP) Prerequisite 4 Units (FS) 4 Units (FS) 3 Units (FS) C- or higher req’d C- or higher req’d PHYS 204A PHYS 204B EECE 365 EECE 482 EECE 465 Chem 111 Physics for EECE 311 Restricted Physics for Signals, Control Digital General Engineering Linear EECE Engineering Systems, & System Signal Chemistry Mechanics Circuits II Elective Elec. & Mag. Transforms Design Processing 4 Units (FS) 4 Units (FS) 4 Units (FS) 4 Units 4 Units (FS) 4 Units (FS) 4 Units (FA) 4 Units (FA) C- or higher req’d EECE 211 & GE Area EECE 481 EECE 101 EECE 316 Restricted EECE 211L C1 or C2 EECE 315 Electro- Introduction Electronics EECE Linear 3 Units Electronics I Mechanical to ECE II Elective Circuits I 4 Units (FS) Conversion 3 Units (FA) 4 Units (SP) 4 Units 4 Units (FS) WI Suggested 4 Units (SP) CMST 131 EECE 237 EECE 490A EECE 144 CSCI 111 GE Area EECE 344 EECE 490B Speech Embedded Engineering Digital Program. & D1 or D2 Digital Engineering Comm. System Profession Logic Algorithms I 3 Units System Economics/ Fund. Devel. & Design Fund. 4 Units (FS) Design Implement. -
Pedaling Energy Harvesting by Low Speed Gearless Generator 1Prof T
International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-03, Issue-11, Feb 2018 Pedaling Energy Harvesting by Low Speed Gearless Generator 1Prof T. T. Bellundagi, 2Prof A. S. Jaibhai, 3Prof A. E. Shivdas 1,2,3Assistant Professor, 1, 2, 3Electrical Dept TSSM’S BSCOER Narhe Pune, India. [email protected], [email protected], [email protected] Abstract - In rural areas of India today also we use bicycle as main medium of transportation. The pedaling energy generated is wasted. It can be used for a better purpose by converting pedaling power in to electrical energy. The same concept of the energy generated due to pedaling can be obtained by gym cycles in urban areas. The energy generated can be stored and can be used for running electrical appliances [1]. These types of systems are already available in markets but they are less efficient, needs more rpm to generate power. This paper presents design of gym cycle which produces same output with less rpm. In this paper low speed generator is designed and modified the position of generator which eliminates gears and belt arrangement. In Low speed generator high power magnets are implemented and number of poles are increased also gauge of winding used is 23.The main intention of this paper is to build straight forward human powered low speed generator. It is clean way of generating energy efficiently. Keywords – Pedaling Energy, Gearless Generator, harvesting, low speed generator, electrical appliances. I. INTRODUCTION II. HISTORY World is a storehouse of energy. We all know that energy can The generator evolved from work by Michael Faraday either be created or destroyed but can be transformed from one and Joseph Henry in the 1820s. -
Is EE Right for You?
Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You? • “Toto, I have a feeling we’re not in Kansas anymore.” • Now that you are here, diii?id you make the right choice? • Electrical engineering is a challenging and satisfying profession. That does not mean it is easy. In fact, with the possible exceptions of medicine or law, it is the MOST difficult. • There are some things you need to consider if you really, really want to be an engineer. • We will consider a few today. EE 1202 Lecture #1 – Why Electrical Engineering? 1 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You (2)? • Why did you decide to be an electrical engineer? – Parents will pay for engineering education (it’s what they want). – You like math and science. – A relative is an engineer and you like him/her. – You want to challenge yourself, and engineering seems challenging. – You think you are creative and love technology. – You want to make a difference in society . EE 1202 Lecture #1 – Why Electrical Engineering? 2 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science The High School “Science Student” Problem • In high school, you were FAR above the average. – And you probably didn’t study too hard, right? • You liked science and math, and they weren’t terribly hard. -
Electrical Engineering Technology
Electrical Engineering Technology Electrical Engineering Program Accreditation The Electrical Engineering Technology program at Central Piedmont is accredited by the Engineering Technology Accreditation Commission Technology (TAC) of the Accreditation Board of Engineering and Technology (ABET). The Associate in Applied Science degree in Electrical Engineering How to Apply: Technology has been specifically designed to prepare individuals to Complete a Central Piedmont admissions application through Get become advanced technicians in the workforce. Started on the Central Piedmont website. Electrical Engineering Technicians (Associates degree holders) typically build, install, test, troubleshoot, repair, and modify developmental and Contact Information production electronic components, equipment, and systems such as For questions about the program or for assistance as a student in the industrial/computer controls, manufacturing systems, instrumentation program, contact faculty advising. The Electrical Engineering Technology systems, communication systems, and power electronic systems. program is in the Engineering Technology Division. For additional information, visit the Electrical Engineering Technology website or call the A broad-based core of courses ensures that students develop the skills Program Chair at 704.330.6773. necessary to perform entry-level tasks. Emphasis is placed on developing the ability to think critically, analyze, and troubleshoot electronic systems. General Education Requirements Beginning with electrical fundamentals, course work progressively ENG 111 Writing and Inquiry 3.0 introduces electronics, 2D Computer Aided Design (CAD), circuit Select one of the following: 3.0 simulation, solid-state fundamentals, digital concepts, instrumentation, C++ programming, microprocessors, programmable Logic Controllers ENG 112 Writing and Research in the Disciplines (PLCs). Other course work includes the study of various fields associated ENG 113 Literature-Based Research with the electrical/electronic industry. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Robotic and Electronic Engineering Technology Mntc General Education
2020-2021 Technical Requirements .............57 Robotic and Electronic Engineering Technology MnTC General Education ..........15 Associate of Applied Science (AAS) Degree Total Credits ...............................72 Mechatronic Applications: Evaluate and determine that all Program Information • mechatronic equipment is in proper working condition, ensuring The Anoka Technical College Electronic Engineering Technology a safe, reliable manufacturing environment. (EET) program offers a 72-credit Robotic and Electronic Engineering • Safety Compliance: Participate in class in a professional manner, Technology Associate of Applied Science (AAS) degree that prepares by acting in compliance with documented safety procedures and students to work with mechatronics, robotics, automation and controls, appropriate industry standards. computer servicing/networking, and biomedical equipment. Course Prerequisites Students gain a thorough understanding of how computers and machines communicate as well as system level troubleshooting, plus Some courses may require appropriate test score or completion of a solid education in electronic engineering technology fundamentals. basic math, basic English and/or reading courses with a “C” or better. Students will also learn about: Graduation Requirements • Mechatronics All Anoka Technical College students seeking an Associate in Applied • Lasers and Optics Science (AAS), diploma, or certificate must meet the cumulative grade • Robotics point average (GPA) of 2.0 or higher. • Computer Troubleshooting A+ • Networking -
Electrical and Computer Engineering: Past, Present, and Future
Electrical and Computer Engineering: Past, Present, and Future Randy Berry1, chair, Department of Electrical and Computer Engineering The field of electrical and computer engineering (ECE) has had an enormously successful history. This field has pushed the frontiers of fundamental research, led to the emergence of entirely new disciplines, and revolutionized our daily lives. ECE departments2 are found in nearly every engineering school and have historically been one of the larger departments both in terms of faculty and student enrollments. Academically, a strong ECE department is highly correlated with the reputation of an engineering school. Of the top 10 engineering schools in the latest US News and World Report rankings of graduate programs, nine have top 10 ranked ECE programs. Nevertheless, ECE is a field that finds itself facing challenges. In this paper, we will look to the field’s past issues and note how the field repeatedly reinvented itself to push to new heights. Finally, we argue that the time is ripe for another reinvention and show how aspects of such a reinvention are already emerging. Areas such as machine learning and data science, the Internet of things, and quantum information systems provide promising directions for ECE — and embracing them provides a path to a bright future. The Present Situation In many ways, ECE is a victim of its own successes. Advances such as computer-aided design tools reduce the number of designers needed. The increased integration reflected in Moore’s law means that more functionality can be integrated into a single integrated circuit (IC), replacing the need for engineering to integrate multiple components in custom designs. -
MOSFET Operation Lecture Outline
97.398*, Physical Electronics, Lecture 21 MOSFET Operation Lecture Outline • Last lecture examined the MOSFET structure and required processing steps • Now move on to basic MOSFET operation, some of which may be familiar • First consider drift, the movement of carriers due to an electric field – this is the basic conduction mechanism in the MOSFET • Then review basic regions of operation and charge mechanisms in MOSFET operation 97.398*, Physical Electronics: David J. Walkey Page 2 MOSFET Operation (21) Drift • The movement of charged particles under the influence of an electric field is termed drift • The current density due to conduction by drift can be written in terms of the electron and hole velocities vn and vp (cm/sec) as =+ J qnvnp qpv • This relationship is general in that it merely accounts for particles passing a certain point with a given velocity 97.398*, Physical Electronics: David J. Walkey Page 3 MOSFET Operation (21) Mobility and Velocity Saturation • At low values of electric field E, the carrier velocity is proportional to E -the proportionality constant is the mobility µ • At low fields, the current density can therefore be written Jqn= µ qpµ !nE+!p E v n v p • At high E, scattering limits the velocity to a maximum value and the relationship above no longer holds - this is termed velocity saturation 97.398*, Physical Electronics: David J. Walkey Page 4 MOSFET Operation (21) Factors Influencing Mobility • The value of mobility (velocity per unit electric field) is influenced by several factors – The mechanisms of conduction through the valence and conduction bands are different, and so the mobilities associated with electrons and holes are different. -
William Stanley Lighted a Town and Powered an Industry
William Stanley Lighted a Town and Powered an Industry by Bernard A. Drew and Gerard Chapman preface by Samuel Sass Berkshire History Fall 1985 Vol. VI No. 1 Published by the Berkshire County Historical Society Pittsfield Massachusetts Preface: At a meeting of engineers in New York a half century ago, a paper was read which contained the following description of a historic event in the development of electrical technology: For the setting we have a small town among the snow-clad New England Hills. There a young man, in fragile health, is attacking single-handed the control of a mysterious form of energy, incalculable in its characteristics, and potentially so deadly that great experts among his contemporaries condemned attempts to use it. With rare courage he laid his plans, with little therapy or precedent to guide him; with persistent experimental skill he deduced the needed knowledge when mathematics failed; with resourcefulness that even lead him to local photographers to requisition their stock of tin-type plates (for the magnetic circuit of his transformer), successfully met the lack of suitable materials, and with intensive devotion and sustained effort, despite poor health, he brought his undertaking, in an almost unbelievably short time, to triumphant success. This triumphant success occurred in Great Barrington, Massachusetts, in 1886, and the young man in fragile health was William Stanley. A century ago he demonstrated the feasibility of transforming to a higher level the generated alternating current voltage, for transmission at a distance, and reducing it at the consumer end to a usable level. One hears or reads on occasion that Stanley “invented” the transformer. -
Fundamentals of MOSFET and IGBT Gate Driver Circuits
Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................